

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

CHARACTERISATION OF A CHLORORESPIRATORY PATHWAY IN *BETA VULGARIS* AND *TRIFOLIUM REPENS*

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Plant Biology

at

Massey University, New Zealand

Alison Marie Winger 2002

ABSTRACT

The chloroplast respiratory pathway (chlororespiration) is postulated to interact with the photosynthetic pathway through the plastoquinone (PQ) pool. Two enzymes are proposed to operate in the pathway: an NAD(P)H dehydrogenase that is homologous to the mitochondrial NADH dehydrogenase, and a putative terminal oxidase. To study the operation and regulation of the chlororespiratory pathway in two higher plant species, silverbeet (B*eta vulgaris* L.) and white clover (*Trifolium repens* L.), two approaches have been used. The first uses salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial quinol-oxidising alternative oxidase, to identify the site of inhibition during electron transfer through the photosynthetic electron transfer chain. The second uses antibodies to two subunits of the NAD(P)H dehydrogenase complex, and examines changes in accumulation of the NAD(P)H dehydrogenase.

For the first part, inhibition by SHAM on the photosynthetic electron transfer chain was shown to be in the vicinity of Q_A using oxygen electrode and fluorescence analysis, and a number of specific photosynthetic electron acceptors, donors and inhibitors in order to isolate specific parts of the photosynthetic electron transfer chain. By the analysis of electron transfer through the whole chain, PS I, PS II and electron transfer from P680 through to Q_A , inhibition by SHAM was shown to be in the vicinity of Q_A . These observations are consistent with the reported effects on chlorophyll fluorescence, but do not exclude the existence of an alternative oxidase in the thylakoid membrane.

To examine the accumulation of the NAD(P)H dehydrogenase complex, antibodies to the NDH-F subunit from barely and the NDH-K subunit from pea were used. Preliminary experiments revealed that the NDH-F antibodies recognised a protein of 79 kDa in isolated silverbeet thylakoid membranes, and the NDH-K antibody recognised a 28 kDa in a preparation of extracted thylakoid membrane proteins from silverbeet. In etiolated silverbeet seedlings, a protein of 31 kDa was recognised by the NDH-K antibody. This recognition was lost in the seedlings following exposure to 12 h and 24 h of light. A protein of 33.1 kDa was recognised by the NDH-K antibody in leaves harvested over a 24 hour period, with no notable difference in level of accumulation throughout the day/night periods. During leaf development in white clover, a protein of 69 kDa, which was more prevalent in senescent leaves, was recognised by the NDH-F antibody, while the NDH-K antibody recognised a protein of 35 kDa that was more prevalent in mature, photosynthetically competent leaves. These results are evaluated in terms of providing evidence for the developmental regulation of chlororespiration in chloroplasts of silverbeet and white clover.

ACKNOWLEDGEMENTS

I would like to say a HUGE thank you to both my supervisors Dr Simon Brown and Dr Michael McManus. Michael, thank you for all your amazing support. I simply can't find words to thank you enough, I know it was tough!!! Simon, thank you also, so much, for believing in me, especially when I had doubts.

I would also like to thank Chris, Trish McLenachan, Liz, Alicia, Richard, Anya and Trish, who gave their time and skill in helping with practical issues. To the people in Michaels lab, who made me smile and helped me keep as sane as possible - Ning (my midnight lab buddy), Balance (thanks for the chocolate!!!!), Trish (thanks for all your wise words!), Vicki, Alicia, Anya, Ranjith, Richard, Simone and Adam. Thank you guys!

Porki, porki, porki. You are the most amazing person I have ever been lucky enough to have in my life. Thanks for all the time you have given to help me in SO many ways. Ahhhh the pool games, the V, and more V, and some more V (and the sing alongs!!) and the welly trips. Te hiki piranga te hoki mo te horo te horo!!!!!! ©

Thanks to frucor, for the invent of the wonderous liquid, V, and to Tool, u were necessary! I need to give gynaforous hugs and kisses to those of you who, in the last three years, have looked after me. Thanks to Rob, Esther, Neil, Garreth and Lala for the numerous coffees, lunches and chats. To Kerry for your help when I asked! To God who somehow kept me at it! And BIG hugs for Wayne-o, Catherine, Adrian, Duncan, John, and Paul for kind (and stern) words when I needed it, and your love (which I always need). I love you, I love you, I love you!! *****

Finally, but equally as important, thanks to my family especially my Momma and Dad for their financial assistance!!!!! To Nana and Poppie for your support and love. This is for you. Thank you, thank you, thank you! ©

I would also like to take this opportunity to thank the Massey University Alumni Association and the J.P. Skipworth Scholarship for financial assistance during the course of this work.

Without everyones support this would not be here now. Actually, I think I may not be here now!!!! God bless you all.

XXX

TABLE OF CONTENTS

ABSTRA	C T ii
ACKNOV	vLEDGEMENTS iv
TABLE C	DF CONTENTS vi
LIST OF	FIGURESix
LIST OF	TABLES xii
ABBREV	IATIONSxiii
CHAPTE	R 1: INTRODUCTION 1
1.1 1.1.1	Overview of Photosynthesis 1 Photosynthetic Electron Transfer 2
1.2 1.2.1	Overview of Mitochondrial Respiration 3 Respiratory Electron Transfer 4
1.3	Chlororespiration
1.4 1.4.1 1.4.1.1 1.4.2 1.4.2 1.4.3 1.4.3.1 1.4.3.2	Respiratory Enzymes in the Chloroplast.8NAD(P)H Dehydrogenase.8Evidence From Molecular Studies.8Evidence From Kinetic Studies.11Succinate Dehydrogenase.12Chlororespiratory Oxidase.13Evidence From Kinetic Studies.13Evidence From Kinetic Studies.13Evidence From Kinetic Studies.13Evidence From Kinetic Studies.13Image: Studies.13Genetic Experiments.15
1.5 1.5.1 1.5.1.1 1.5.1.2 1.5.1.3 1.5.1.4 1.5.2 1.5.3	The Possible Functions of Chlororespiration16Environmental Stresses16High-Light Damage16Nitrogen Limitation17Carbon Dioxide Limitation17Heat Stress17Developmental Regulation18Evidence for a Photosynthetic Metabolism Role of Chlororespiration18
1.6	Salicylhydroxamic Acid 19
1.7	Aims

CHAPTER	2: MATERIALS AND METHODS	22
2.1	Chemicals	22
2.2	Plant Material	22
2.2.1	Silverbeet	22
2.2.2	White Clover	22
2.3	Preparation of Samples	25
2.3.1	Preparation of Intact Chloroplast	25
2.3.2	Preparation of Thylakoid Membranes	26
2.3.2.1	Thylakoid Isolation From Whole Leaves	26
2.3.2.2	Thylakoid Isolation From Isolated Chloroplasts	26
233	Preparation of Tris-Washed Thylakoid Membranes	27
234	Preparation of Etionlasts	2.7
2.3.1	Whole Leaf Protein Extraction	28
2.3.5	DNA Extraction	20
2.3.0	DNA Extraction	49
2.4	Analytical Methods	29
2.4.1	Chlorophyll Concentration of Isolated Thylakoid Membranes	29
2.4.2	Measurement of Photosynthetic Electron Transfer	
2 4 3	Chlorophyll Fluorescence Measurements	33
2.1.5	PCR Amplification of DNA	34
2.4.4	DNA Sequencing	34
2.4.5	Electrophorosia	
2.4.0	Ageneral Cal Electron houses	30
2.4.0.1	Agarose Gel Electrophoresis	30
2.4.0.2	Linear Slab Gel SDS-PAGE.	
2.4.7	Western Analysis of SDS-PAGE Gels	38
2.4.7.1	Protein Concentration of Samples for Western Analysis	38
2.4.7.2	<i>Transfer of Proteins From SDS-PAGE Gel to Membrane</i>	39
2.4.7.3	Immunodetection of Target Proteins	40
2.4.8	Estimation of Protein Molecular Weights	41
CHAPTER	3: THE EFFECT OF SALICYLHYDROXAMIC ACID ON	42
rnorosi	NTHETIC ELECTRON TRANSFER	42
3.1	Measurement of Electron Transfer Rates	42
3.2	Effect of SHAM on Whole Chain Electron Transfer	44
3.3	SHAM Titration	52
3.4	Effect of SHAM on Partial Chain Electron Transfer	54
3.1.1	PS I	55
3.1.2	PS II.	55
3.5	Effect of SHAM Within the PS II Complex	62

3.5.1 3.5.2	Determination of SHAM Inhibition in the Absence of the OEC
CHAPTER 4 DEHYDROG	: DETERMINATION OF CHLOROPLASTIC NAD(P)H GENASE PROTEIN ACCUMULATION
4.1	Isolation of Intact Chloroplasts
4.1.1	Light Microscopy of Chloroplasts
4.1.2	Confocal Microscopy of Chloroplasts
4.2	Isolation of the Chloroplast <i>ndhF</i> Gene Using RT-PCR
4.3	Determination of Antibody Specificity
4.3.1	Specificity of Anti-NDH-F Antibodies
4.3.2	Specificity of Anti-NDH-K Antibodies
4.3.3	Accumulation of the NDH-K Protein During Greening of Silverbeet
	Seedlings
4.4	Accumulation of NDH-F and NDH-K During Leaf Development 83
4.4.1	Diurnal Expression Studies
4.4.2	Expression in Newly Initiated and Developing Leaves of White Clover 85
4.4.3	Expression During Leaf Senescence
CHAPTER 5	: DISCUSSION
5.1	SHAM Inhibition of Photosynthesis
5.1.1	Future Work
5.2	Expression of NAD(P)H Dehydrogenase Proteins
5.2.1	RT-PCR of the Chloroplastic <i>ndhF</i> Gene100
5.2.2	Antibody Specificity
5.2.3	Accumulation of NDH-F and NDH-K in Plant Development
5.2.3.1	Diurnal Regulation
5.2.3.2	Developmental Regulation
5.2.4	Future Work
5.3	Conclusions
BIBLIOGRA	АРНҮ
APPENDIX.	

viii

LIST OF FIGURES

Figure 1.1	A higher plant chloroplast visualized using SEM1	L
Figure 1.2	Diagrammatic representation of photosynthetic electron transfer chain in higher plants	3
Figure 1.3	A mitochondrion visualised using SEM	1
Figure 1.4	Diagrammatic representation of the plant mitochondrial respiratory electron transfer chain	5
Figure 1.5	Diagrammatic representation of the interaction between the chlororespiratory and photosynthetic electron transfer chains.	7
Figure 1.6	Schematic representation of the chloroplastic NAD(P)H dehydrogenase complex of higher plants	10
Figure 1.7	Stick model of salicylhydroxamic acid	19
Figure 2.1	An excised white clover stolon displaying various stages of leaf development	24
Figure 2.2	Schematic diagram of the fluorescence set up	34
Figure 2.3	Sequences of the <i>ndhF</i> primers used in PCR to amplify a partial sequence of the silverbeet <i>ndhF</i> gene	35
Figure 2.4	Set-up of the cassette used to transfer proteins from SDS-PAGE gel to PVDF membrane	40
Figure 3.1	Typical oxygen electrode trace of H ₂ O to FeCN assay used to determine electron transfer rate of each thylakoid preparation	43
Figure 3.2	A typical oxygen electrode trace of whole chain electron transfer inhibiti by 20 mM SHAM.	on 45
Figure 3.3	A typical fluorescence transient of whole chain electron transfer in the presence of 20 mM SHAM	47

Figure 3.4	Normalised fluorescence of whole chain electron transfer in the presence of 20 mM SHAM
Figure 3.5	Fluorescence spectrum of thylakoid preparation in assay buffer plus SHAM and thylakoid preparation in the presence of DMSO
Figure 3.6	Effect of increasing concentrations of SHAM on electron flow from H ₂ O through to FeCN
Figure 3.7	Sites of action of various electron acceptors, donors and inhibitors 54
Figure 3.8	Typical oxygen electrode trace of inhibition by 20 mM SHAM on the assay DCIP/Asc through to MV
Figure 3.9	Typical oxygen electrode traces of inhibition by SHAM on the PS II assays H ₂ O through to <i>p</i> BQ, and H ₂ O to FeCN
Figure 3.10	Normalised fluorescence yield showing the effect of 20 mM SHAM on pool size of isolated silverbeet thylakoids in the presence of FeCN 58
Figure 3.11	The effect of SHAM on F _M of isolated silverbeet thylakoids
Figure 3.12	Normalised fluorescence yield showing the effect of DCMU and SHAM on pool size of isolated silverbeet thylakoids
Figure 3.13	Schematic representation of the redox components present in PS II
Figure 3.14	Typical oxygen electrode traces of inhibition by SHAM on the PS II assays DPC through to MV, and H ₂ O to SiMo
Figure 4.1	Light and confocal microscope images of whole chloroplast preparations
Figure 4.2	Separation of PCR products from silverbeet chloroplast DNA amplified with ND972F and ND2110RM primers
Figure 4.3	Sequences of the PCR products using the forward and reverse <i>ndhF</i> primers in a preparation of silverbeet chloroplastic DNA
Figure 4.4	Coomassie blue staining (A) and western analysis using the NDH-F antibody (B) of isolated thylakoids, whole chloroplasts and whole leaf proteins

Figure 4.5	Coomassie blue stain of proteins at different stages of thylakoid isolation and following extraction with increasing concentrations of Triton X-100
Figure 4.6	Western blot showing levels of NDH-K protein present in samples at different stages of thylakoid isolation, and following extraction with increasing concentrations of Triton X-100
Figure 4.7	Coomassie blue staining (A) and western analysis using the NDH-K antibody (B), of thylakoid proteins extracted from silverbeet cotyledons exposed to 0, 12 and 24 hours of light
Figure 4.8	Coomassie blue staining (A) and western analysis using the NDH-K antibody (B) of thylakoid proteins extracted over a 24 hour period
Figure 4.9	Coomassie blue staining (A) and western analysis using the NDH-F antibody (B), of chloroplast proteins at varying stages of early leaf development
Figure 4.10	Coomassie blue staining of chloroplast proteins (A) and thylakoid proteins (B) extracted at different stages of leaf development in white clover
Figure 4.11	Chlorophyll analysis (A) and western analysis using the NDH-F antibody (B), of chloroplast proteins extracted at different stages of leaf development in white clover
Figure 4.12	Chlorophyll analysis (A) and western analysis using the NDH-K antibody (B), of thylakoid proteins extracted at different stages of leaf development in white clover
Figure 5.1	Schematic diagram of the PS II complex of higher plants
Figure 5.2	Schematic diagram of the chloroplastic NAD(P)H dehydrogenase 99

LIST OF TABLES

Table 1.1	Characteristics of the alternative oxidase and the cytochrome oxidase of plant mitochondria	14
Table 2.1a	Specific electron acceptors of the photosynthetic electron transfer chain	. 32
Table 2.1b	Specific electron donors of the photosynthetic electron transfer chain	. 32
Table 2.1c	Specific electron inhibitors of the photosynthetic electron transfer chain	. 32
Table 2.2	Composition of resolving and stacking gels used to construct SDS-PAC gels)E . 3 7
Table 3.1	F_v/F_m values for whole chain. FeCN and DCMU fluorescence assays.	49
Table 3.2	Effect of 20 mM SHAM on electron transfer through the defined assays	. 65
Table 4.1	BLAST result of silverbeet <i>ndhF</i> PCR fragment	. 73