Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A BIOLOGICAL TREATMENT SYSTEM

FOR

FELLMONGERY WASTES

.

A thesis presented in partial fulfilment of the requirement for the degree

MASTER OF TECHNOLOGY in Biotechnology

At Massey University Palmerston North New Zealand

MICHAEL DESMOND RYDER

1973

SUMMARY

Traditionally fellmongery wastes from freezing works have been treated by ponding before discharge to the nearest watercourse. Unfortunately, this does not always produce a satisfactory effluent.

These studies seek to provide a method of improving the quality of fellmongery effluent.

The lime and sulphide components of fellmongery wastes limited many of the chemical and biological systems considered. Biofiltration offered a simple and inexpensive method of treatment. Batch and continuous loadings were considered, the batch loadings being subjected to a range of recirculation ratios. Emphasis was directed at determining the mechanism of sulphide removal from the waste during treatment.

Batch operation (8 hour/day per 5 day-week) was shown to be marginally superior to a continuous operation on the basis of COD removal. Both systems exhibited 90 - 100% sulphide removal, which was shown to occur by a biological mechanism. <u>Thiobacillus</u> thioparus, an autotrophic sulphur-oxidising bacteria, was the main agent of sulphide removal, sulphate being the end product of the oxidation process. <u>Thiorhodaceae</u>, the purple sulphur bacteria, was also isolated from the filter during continuous operation. The mechanism of sulphide removal from fellmongery wastes was incompletely defined.

Effluent pH was shown to be independent of changes in influent pH. A decrease in pH during treatment was due to the increases in sulphate concentration and the precipitation of lime by carbonation reactions.

Biological filtration of fellmongery wastes provided a satisfactory method for the simultaneous reduction of COD, sulphide concentration and lime concentration.

ACKNOWLEDGEMENTS

I wish to acknowledge the following: -

- Dr. H. Melcer and Dr. J. McDougall for their supervision and assistance.
- Professor R.L. Earle for his advice.
- Dr. I.S. Maddox for valuable assistance in the microbiological aspects of this study.
- The New Zealand Leather and Shoe Research Association for analysing sludge samples and providing waste and lime liquors.
- The Taikorea Fellmongery and Longburn Freezing Works Fellmongery Department for supplying lime liquor.
- Mr. D.W. Couling for his assistance in building equipment.
- Mr. P. Herbert, Massey University Printery.
- Mrs. J.A. Jenkins for the excellent typing of this thesis.
- Jane for proof reading.
- Dave for moral support and the use of his handy dictionary.

CONTENTS

				Page	
INT	RODUC	TION	3. 3.	l	
ı.	LITERATURE REVIEW			3	
	1.1	Characteristics of Fellmongery Waste		3	
		1.1.1	Introduction	3	
		1.1.2	Physical Characteristics	3	
		1.1.3	Chemical Characteristics	4	
	1.2	The Tr	eatment of Fellmongery Waste		
		1.2.1	Introduction	7	
		1.2.2 Biological Treatment Methods			
	1.2.2.1 Aerobic Treatment				
			1.2.2.1.1 Biological Filtration	8	
			1.2.2.1.2 Activated Sludge Units	9	
			1.2.2.1.3 Oxidation Ditches	12	
			1.2.2.1.4 Oxidation Lagoons	13	
			1.2.2.2 Anaerobic Treatment	15	
			1.2.2.3 Aerobic/Anaerobic Treatment Comparisons	17	
		1.2.3	Physical and Chemical Treatment Methods	17	
			1.2.3.1 Physical	17	
			1.2.3.2 Chemical	19	
	1.3	Biolog	ical Filtration	21	
		1.3.1	Introduction	21	
		1.3.2	Definitions	21	
		1.3.3	Application of Biofiltration to Fell- mongery and Tannery Wastes	22	
		1.3.4	Effect of Sulphides on Biofiltration	23	
		1.3.5	Effect of pH on Biofiltration	24	
	1.4 Chemical and Microbiological Systems Presen in Biological Fellmongery Waste Treatmen				
		1.4.1	Introduction	25 25	
		1.4.2	Physio-Chemical Aspects	25	
		1.4.3	Microbiological Sulphide Transformations	27	

					Page
2.	PREL	IMINARY	CONSIDER	ATIONS	30
3.	BIOLOGICAL FILTRATION OF FELLMONGERY EFFLUENT				
	3.1	Introd	uction		34
	3.2	Materi	ials and Methods		
		3.2.1	Waste So	urce and Make Up	34
		3.2.2	Pilot Pl	ant Equipment and Operation	36
			3.2.2.1	Equipment	36
		5)	3.2.2.2	Operation	38
			3.2.2	.2.1 Batch Operation	38
			3.2.2	.2.2 Continuous Operation	40
			3.2.2	.2.3 Oxygen Transfer Studies	40
			3.2.2.3	Sludge Removal	41
		3.2.3	Analytic	al Techniques	41
			3.2.3.1	Chemical Oxygen Demand	41
			3.2.3.2	Biological Oxygen Demand	42
			3.2.3.3	Total Kjeldahl Nitrogen	42
			3.2.3.4	Sulphide	42
			3.2.3.5	Sulphate	43
			3.2.3.6	pH and Alkalinities	43
			3.2.3.7	Sludge Settling Tests	43
			3.2.3.8	Ash and Calcium Determinations	43
			3.2.3.9	Total Solids	44
			3.2.3.10	Sulphite Determination	44
	3.3	Result	ts		
		3.3.1	Batch Fe	ed	44
			3.3.1.1	COD Loading and Removal	44
			3.3.1.2	Sulphide Removal	45
			3.3.1.3	Nitrogen Removal	47
			3.3.1.4	pH/Alkalinity Considerations	47
		3.3.2	Continuo	us Operation	47
			3.3.2.1	COD Loading and Removal	47
			3.3.2.2	Sulphide Removal	48
			3.3.2.3	pH/Alkalinity Considerations	49
		3.3.3	Sludge A	nalysis	49
			3.3.3.1	Chemical Analysis	

				Page	
			3.3.3.2 Sludge Settling Tests	49	
		3.3.4	Oxygen Transfer in the Biological Filter	50	
	3.4	Discussion			
		3.4.1	COD Removal	51	
		3.4.2	Sulphide/Sulphate Considerations	54	
		3.4.3	Nitrogen Removal	57	
		3.4.4	pH/Alkalinity Considerations	58	
		3.4.5	Sludge Analysis	59	
		3.4.6	Oxygen Transfer in the Filter	60	
,			OF OWNERS AND PROPAGAT DEMONATO OF		
4.		COMPARISON OF CHEMICAL AND BIOLOGICAL REMOVALS OF SULPHIDE - FERMENTER STUDIES			
	4.1	Introduction			
	4.2	Materi	als and Methods	62	
		4.2.1	Solutions and Waste Samples	62	
		4.2.2	Fermenter Design and Operation	63	
		4.2.3	Analytical Techniques	64	
	4.3 Results			64	
		4.3.1	Aeration of Pure Sulphide Solutions of Different pH Values	64	
		4.3.2	Aeration of Constant pH Lime-Sulphide Solutions of Varying Lime Concen- trations	65	
		4.3.3	Aeration of Fellmongery Wastes of Varying pH	66	
		4.3.4	The Effect of the Addition of Column Biomass on the Removal of Sulphide from Fellmongery Waste at Varying pH	66	
		4.3.5	The Influence of Manganese on the Chemical and Biological Removal of Sulphide in Fellmongery Wastes	L 68	
		4.3.6	Determination of K_L^{a} for the Fermenter	69	
	4,4	Discussion			
		4.4.1	Aeration of Pure Sulphide, Lime-Sulphide and Fellmongery Waste Samples	70	
		4.4.2	Biological Removal of Sulphide from Fellmongery Wastes	72	

					Page	
5.	MICROBIOLOGICAL STUDIES - WITH REFERENCE TO SULPHIDE REMOVAL					
	5.1 Introduction				76	
5.2 Materials and Methods			als and M	ethods	76	
	5.2.1 Media Composition			nposition	76	
		5.2.2	Experime	ntal Procedures	77	
			5.2.2.1	Thiobacillus thioparus Isolations	77	
			5.2.2,2	Growth of <u>Thiobacillus</u> thioparus in Fellmongery Waste and Sulphide Solutions	79	
			5.2.2.3	Thiorhodaceae Isolations	79	
	5.3	Result	5		79	
		5.3.1	Thiobaci:	<u>llus thioparus</u> Isolations	79	
			5.3.1.1	Initial Isolations	79	
			5.3.1.2	Isolations made in Conjunction with Filter Temperature Changes	80	
			5.3.1.3	Sulphide Removal from Fellmongery Waste and Sulphide Solutions by Th. thioparus	81	
			5.3.1.4	The Isolation of Thiorhodaceae	82	
	5.4 Discussion			83		
	1000	5.4.1	Thiobaci:	<u>llus thioparus</u> Studies	83	
		5.4.2	Thiorhoda	aceae Investigations	87	
6,	GENE	RAL DISC	CUSSION		90	
CONCLUSIONS AND RECOMMENDATIONS					95	
REFERENCES						

APPENDICES

INTRODUCTION

INTRODUCTION

The fellmongery process involves the removal of wool from sheep and lamb skins prior to tanning. The pelts also must be free from epidermic, sweat and fat glands, muscle tissue, blood vessels, fat cells and collagen fibrous tissue. The process consists of the following operations:-

- (1) Washing of pelts.
- (2) Lime/Na_S paint application.
- (3) Wool removal; manual pulling.
- (4) Liming; removal of residual wool, pelt conditioning, carried out in a "dolly" or drum.
- (5) Deliming and bating; removal of lime liquor and extraneous pelt matter, "dolly" or drum processing.
- (6) Pickling; preservation; "dolly" or drum processing.

Thirty-nine follmongeries, which were operating in New Zealand at the end of 1972 (42), were all departments of meat processing works.

Fellmongering, as a completely separate process from tanning, is relatively unique to New Zealand. The majority of foreign fellmongeries are integrated with the tanning process. This situation arose from New Zealand's early trading role as a producer of raw materials for the more industrially developed countries of Western Europe. Thus New Zealand exports only partially processed pelts, although this is likely to change in the future. Approximately 36 million pelts, valued at \$N.Z. 48.7 million, were exported in 1971; the majority to Britain, the U.S.A., the Netherlands and France (84).

The lamb and sheep kill of a meat processing works will influence the size of the associated fellmongery. The pelt throughput of the fellmongery determines the volume of effluent discharged. The organic portion of fellmongery waste is represented by its high BOD, while the sulphide and lime components constitute the bulk of the inorganic fraction. The waste is characteristically alkaline. An effluent with such characteristics is not readily amenable to biological treatment, although biological filtration is an exception. Costly chemical treatments are required to achieve a satisfactory product for discharge.

After a primary sodimentation treatment the majority of folloongery effluents are discharged to ponds or to the main meat processing wasto stream. Additions of fellmongery effluent to existing effluent streams only serve to increase their respective voluces and organic loads. Treatment by ponding necessitates large land areas, and results in the emission of unpleasant odours during treatment.

Discharge of untreated fellmongery waste to sewer systems or receiving waters is undesirable owing to the toxic effect of the sulphide and lime components on biological life present in both systems. The corrosive effect is well recognised, and accordingly sulphide concentrations entering sewers are set at low limits by local authorities. The high BOD of the waste will cause severe depletion of dissolved oxygen in receiving waters if insufficient dilution is present.

With an increasing public awareness of environmental conservation, treatment of effluents such as fellmongery, will become mandatory. Waste treatment systems must be selected on the basis of economy and performance characteristics. In addition, maintenance and degree of attention must be minimal. A system with a specific mechanism for simultaneous removal of BOD, sulphide and lime is desirable. Several processes when combined together may accomplish this, but biological filtration exhibits the potential to accomplish these objectives in a single operation. Accordingly, these studies were concerned with the investigation of the performance of a biological filter treating fellmongery waste. The nature of the mechanism of sulphide removal and the alkalinity of the waste were also the subject of a detailed study.

20