

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Molecular epidemiological studies of *Campylobacter* isolated from different sources in New Zealand between 2005 and 2015

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at Massey University, Manawatu, New Zealand.

> Antoine Nohra May 2017

Abstract

Campylobacteriosis is one of the most important food-borne diseases worldwide, and a significant health burden in New Zealand. *C. jejuni* is the predominant species worldwide, accounting for approximately 90% of human cases, followed by *C. coli*.

The first study evaluated whether the time elapsing from sampling to culture has an impact on the recovery rate of *Campylobacter*, and explored whether some sequence types are more likely than others to be missed due to delayed culture. The study revealed that, whereas delayed culture may affect the recovery rate of *Campylobacter*, there was no evidence of a bias due to specific sequence types being under detected.

The second study aimed to analyse the differences in the *Campylobacter* viable counts and in population genetic structure between chicken drumsticks and whole carcass meat for retail sale. The results indicate that the *Campylobacter* population genetic structure did not differ between the two types of retail chicken meat. However, the difference in *Campylobacter* viable counts suggest that consumption of different chicken meat products may pose different risks of campylobacteriosis associated with an exposure to different infection doses.

In the third study, we genotyped *C. coli* isolates collected from different sources between 2005 and 2014, to study their population structure and estimate the contribution of each source to the burden of human *C. coli* disease. Modelling indicated ruminants and poultry as the main sources of *C. coli* infection.

The fourth study aimed to genotype *C. jejuni* isolates collected between 2005 and 2015 from different sources, to assess changes in the molecular epidemiology of *C. jejuni* following the food safety interventions implemented by the New Zealand poultry industry in 2007/2008. Modelling indicated that chicken meat from 'Supplier A' was

the main source of *C. jejuni* human infection before the interventions; but after the interventions, ruminants became the main source of infection, followed by chicken meat from Supplier A.

This thesis has made us aware of the aetiology of *C. coli* infections and the change in the attribution of *C. jejuni* infections. These findings should be used in developing further strategies to reduce the total burden of human campylobacteriosis.

Acknowledgement

I would like to take this opportunity to thank God for all His blessings that He has given me during my time of study. Studying in New Zealand was one of the most memorable experiences in my life. I would like to thank both the New Zealand government for granting me the visa and the New Zealand people for their hospitality and kindness, helping me feel comfortable and welcome in making my studies more pleasant, less stressed and at ease.

Academically speaking, I would like to thank my primary supervisor Dr Alex Grinberg who taught me many things during these years. Thank you for your precious time, effort and the support you showed me during my study period. Thank you for your kindness and encouragement during some difficult times.

I was privileged to have a panel of kind co-supervisors who provided mentorship and shared their knowledge to complete my thesis. I would like to start off by thanking Prof Nigel French for your time and commitment which led me to focus and continue on with my studies in the right direction. Without your continuous support and expertise my experience would not have been the same. It was an honor to have the opportunity to work with you and learn from your wide library of knowledge. To Dr Julie Collins-Emerson, I would like to thank you for your research experience that you shared and for your valuable comments and your quick comments on my thesis chapters. To Dr Anne C. Midwinter, I appreciate all your support and care that you kindly disclosed to me through my time of study. Your patience, reassurance and attention while listening to my problems, giving me advice and encouragement made me feel inspired, less stressed and focused to continue on in my studies. Your valuable comments, immediate corrections and wisdom all played a great part to my thesis. Lynn Rogers and Rukhshana Akhter at ^mEpiLab, which I would also like to acknowledge for their

iii

technical support and Dr Jonathan Marshall for his time and assistance in the statistical analysis. Moreover, I am grateful to the Institute of Veterinary, Animal and Biomedical Sciences for funding couple of research projects and conference travel. Thank you to the New Zealand Ministry of Primary Industry because the isolates examined in this study were collected as part of the campylobacteriosis surveillance program funded by them.

I would like to thank my parents extensively for their support throughout all my academic years. Coming to New Zealand from Lebanon without a scholarship would not have been accomplished without their love, financial help and support. To my father, Salim, I am very thankful for all your hard work and efforts that you have generously bestowed towards me especially at this point of time in your life. Your financial contribution allowed me to have a decent life and I am forever grateful. To my Mother, Maud, thank you for all the love, care, and sacrifices that you continually offered me, including the simple daily skype calls with you that gave me determination to keep moving forward. Thank you to both my sisters, Zeina and Samar, for their enthusiasm, support, and praise, always being there for me when I needed them. To Diane, my best friend in Sydney, my life is brighter with you in it. I would like to thank you for your help in relieving the stress of loneliness through our daily talks and laughs. Last but not least, I would like to thank George my Godfather who is like a father figure, big brother and best friend to me. Thank you for all your love, advice, sacrifices and financial support that you provided me. I am therefore fortunate to have you in my life.

Finally, I would like to dedicate this thesis to my little nephews Michael, George and Charbel as well as my niece, Maud, who are growing up so quickly during my time away. Seeing your smile once every year powered me with energy and determination to finish my PhD.

List of presentation and publication

- Molecular epidemiology of *Campylobacter coli* isolated from different sources in New Zealand between 2005 and 2014. Poster presented at the 18th International Workshop of *Campylobacter*, *Helicobacter* & Related Organisms (CHRO), Rotorua, New Zealand, 1-5 November 2015.
- Nohra A, Grinberg A, Midwinter AC, Marshall JC, Collins-Emerson JM, French NP. 2016. Molecular epidemiology of *Campylobacter coli* isolated from different sources in New Zealand between 2005 and 2014. *Applied and Environmental Microbiology* 82: 4363-4370.

Nomenclature

BA	Blood agar
BB	Bolton Broth
BPW	Buffered peptone water
CC	Clonal complex
cfu	colony forming unit
CrI	Credible interval
DALY	Disability Adjusted Life Years
DNA	Deoxyribonucleic acid
ELISA	Enzyme-linked immunosorbent assay
ESR	Environmental Science and Research Ltd.
GBS	Guillain-Barré syndrome
HL	Heat-labile
HS	Heat-stable
IID	Infectious intestinal disease
IVABS	Institute of Veterinary, Animal and Biomedical Sciences
mCCDA	modified Cefoperazone Charcoal Deoxycholate agar
MCL	Maximum composite likelihood
^m EpiLab	Molecular Epidemiology and Public Health laboratory
ML	Maximum likelihood
MLST	Multi locus sequence typing
MU	Massey University
MU NMDS	Massey University Non-metric multidimensional scaling

PERMANOVA	Permutational multivariate analysis of variance
PFGE	Pulsed field gel electrophoresis
PSI	Proportional similarity index
spp.	Species
ST	Sequence type
WHO	World Health Organisation

Thesis structure and format

This thesis is composed of six chapters covering a literature review, four research-based chapters and a final discussion. Raw data are presented in Appendices. Some repetition between chapters was inevitable due to the style of the thesis presentation, especially in the materials and methods sections. These repetitions allow each chapter to be read in isolation.

Chapter one

This chapter is a general overview covering the main concepts and overviewing the influential literature addressed in the thesis. It discusses the molecular epidemiological studies of human campylobacteriosis in New Zealand and other countries and summarises the studies done in this PhD projects.

Chapter two

This chapter compares direct versus delayed culture for *Campylobacter* in human faeces, titled: "Detection and recovery rate of *Campylobacter* from faecal swabs: Direct vs delayed culture"

Chapter three

This chapter compares two types of chicken retail meat (whole carcasses versus drumsticks) collected from different suppliers, titled: "Abundance and multilocus genotypes of *Campylobacter* species isolated from chicken drumsticks and whole carcasses obtained from different suppliers in the retail chain".

viii

Chapter four

This chapter titled **"Molecular epidemiology of** *Campylobacter coli* **isolated from different sources in New Zealand between 2005 and 2014"** formed the basis of a paper published in Applied and Environmental Microbiology:

Nohra A, Grinberg A, Midwinter AC, Marshall JC, Collins-Emerson JM, French NP. 2016. Molecular epidemiology of *Campylobacter coli* isolated from different sources in New Zealand between 2005 and 2014. Applied and Environmental Microbiology 82: 4363-4370

Chapter five

This chapter compares the source attribution of *C. jejuni*-associated campylobacteriosis cases before versus after intervention, titled: "Changes in the molecular epidemiology of *Campylobacter jejuni* following food safety interventions by the poultry industry".

Chapter six

This chapter summarises and discusses the significance of the results of the previous studies.

Appendices: The raw data and supplementary materials of each chapter are presented in this study.

Bibliography: The literature cited is presented in the format required by Applied and Environmental Microbiology journal.

Table of Contents

1.	General	overview	1
	1.1 Campy	vlobacter	1
	1.2 Camp	vlobacteriosis	3
	1.3 Report	ted incidence rate of campylobacteriosis cases around the world	14
	1.3.1	North and Central America	4
	1.3.2	South America	5
	1.3.3	Europe	5
	1.3.4	Asia and Middle East	6
	1.3.5	Africa	7
	1.3.6	Oceania	7
	1.4 Manav	vatu sentinel surveillance site	8
	1.5 Typing	g methods for Campylobacter spp	9
	1.5.1	Phenotyping	9
	1.5.2	Genotyping	10
	1.6 Source	e attribution of campylobacteriosis	12
	1.7 Metho	ds and analytical tools used in campylobacteriosis	molecular
	epiden	niological source attribution studies	14
	1.7.1	The proportional similarity index	14
	1.7.2	Minimum spanning trees	15
	1.7.3	The asymmetric island model	15
	1.7.4	Bayesian hierarchical model	16
	1.8 Poultr	y meat production chain and <i>Campylobacter</i>	16
	1.9 Aims	of this PhD project18	
2.	Detectior	and recovery rate of <i>Campylobacter</i> from faecal swabs:	: Direct vs
	delayed o	culture	21
	2.1 Abstra	ct	21
		action	
		als and methods	
	2.3.1	Study population	
	2.3.2	Samples analysed.	
		Bacterial culture and identification	

	2.3.4	Sequence typing	
	2.3.5	Data analysis	27
	2.3.6	Minimum spanning tree	
	2.3.7	PERMANOVA	
	2.4 Result	ts	29
	2.5 Discu	ssion	
	2.6 Ackno	owledgements	
3.	Abunda	nce and multilocus genotypes of <i>Campylobacter</i> specie	s isolated from
		drumsticks and whole carcasses obtained from different	
	the retai	l chain	
	3.1 Abstra	act	
	3.2 Introd	uction	
	3.3 Mater	ials and methods	40
	3.3.1	Sampling for <i>Campylobacter</i> isolation	40
	3.3.2	Campylobacter isolation and identification	41
	3.3.3	Sequence typing	43
	3.3.4	Genetic relatedness	44
	3.3.5	Minimum Spanning Tree	45
	3.3.6	Proportional Similarity Index	45
	3.3.7	Colony counts on chicken samples	45
	3.3.8	Analysis of Campylobacter colony counts	46
	3.4 Result	ts	47
	3.4.1	Multilocus sequence typing	48
	3.4.2	Genetic relatedness	
	3.4.3	Minimum Spanning Tree	56
	3.4.4	Proportional similarity index	
	3.4.5	Campylobacter count data analysis	
	3.5 Discu	ssion	61
	3.6 Ackno	owledgements	64
4.	Molecula	ar epidemiology of <i>Campylobacter coli</i> isolated from d	ifferent sources
	in New Z	Zealand between 2005 and 2014	65
	4.1 Abstra	act	65
	4.2 Introd	uction	66

4.3 Mater	ials and methods	
4.3.1	Study population	68
4.3.2	Campylobacter isolates	
4.3.3	Bacterial culture and identification	69
4.3.4	Sequence typing	71
4.3.5	Minimum Spanning Tree	72
4.3.6	Molecular phylogenetic analysis	73
4.3.7	Genetic relatedness	73
4.3.8	C. coli source attribution	74
4.4 Resul	ts	74
4.4.1	Proportion of <i>C. coli</i> in ELISA-positive faecal specimens	74
4.4.2	Sequence Types	75
4.4.3	Minimum Spanning Tree	75
4.4.4	Molecular phylogenetic analysis	77
4.4.5	Permutational Multivariate Analysis of Variance	78
4.4.6	Source attribution for human infections	80
4.4.7	Diversity index and rarefaction curve	81
4.5 Discu	ssion	
4.6 Ackno	owledgements	86
. Changes	s in the molecular epidemiology of <i>Campylobacter jejuni</i> follo	wing food
safety in	terventions by the New Zealand poultry industry	87
5.1 Abstra	act	
5.2 Introd	luction	
5.3 Mater	ials and methods	
5.3.1	Collection of human clinical Campylobacter isolates and identi	fication of
	<i>C. jejuni</i> from humans and other sources	90
5.3.2	Collection of chicken meat samples	92
5.3.3	Campylobacter colony counts on chicken samples	
5.3.4	Analysis of <i>Campylobacter</i> colony counts	93
5.3.5	Collection of samples from ruminants, wild birds and water	93
5.3.6	Multilocus sequence typing	
5.3.7	Analysis of data	95
5.4 Resul		

5.4.1	Proportion of C. jejuni isolates among the different sources	96
5.4.2	Analysis of bacterial counts	
5.4.3	Analysis of sequence types	100
5.4.4	Diversity index and rarefaction curves	100
5.4.5	C. jejuni population structure and differentiation between sou	urces102
5.4.6	Source attribution for human infections	
5.5 Discu	ssion	107
5.6 Ackno	owledgements	111
6. General	Discussion	112
7. Appendi	ix	119
7.1 7.1 Cl	hapter 3 supplementary information	119
7.2 7.2 C	hapter 4 supplementary information	121
7.3 7.3 Cl	hapter 5 supplementary information	124
8. Bibliogr	aphy	138

List of tables

Table 2	2.1: A 2×2 ta	ble for d	iagnosti	e test perform	nance sho	wing the	e true pos	itive (TP),
false	positive	(FP),	true	negative	(TN)	and	false	negative
(FN)								
Table 2	2.2: Compari	son of o	utcomes	: direct vs d	elay cultu	re, direc	t culture	vs ELISA
method	and delay cu	lture vs H	ELISA n	nethod				29
Table 2	2.3: CC assig	nment w	rith ST r	profile recov	ered from	samples	that wer	e negative
	red culture bu		-			-		-
-		-						
Table 2	2.4: CC assig	gnment w	1th ST p	profile recov	ered from	samples	that wer	e negative
by ELIS	SA but positiv	ve in dire	ct cultur	e				
Table	3.1: Overvie	ew of sa	mples c	collected bet	ween Oc	tober 20	13 and	September
2014								47
Table 3	.2: Frequenc	y of ST i	solated f	rom human	cases and	chicken	samples	49
Table 3	3.3: Frequence	cy of ST	s isolate	ed from diffe	erent supp	liers of	retail chi	cken meat
product	S							51
Table 3	.4: Simpson [*]	's and Sh	annon's	diversity ind	lices of th	e differei	nt sources	s (95% CrI
are in b	rackets)							53
Table (3.5: The PSI	for eac	h source	e compared	to the hu	man ger	notypes d	istribution
includir	ng 95% boots	strap CrI.	The hig	gher the valu	ue the stro	onger the	similarit	y between
the gene	otypes detect	ed in hun	nan case	s and the sou	irce			58
Table 3	3.6: Prevaler	nce and o	count le	vel of Camp	oylobacter	· spp. or	differen	t types of
samples	and supplier	rs						

Table 3.7: Zero-inflated Poisson model results	(51
--	---	----

Table 4.2: Numerical indices measuring diversities, PSI and asymmetric island model

 Table 5.2: Overview of samples collected from different sources 'after the intervention'

List of figures

Figu	re 1.1:	Campylobacte	eriosis rate	per 100	,000 pop	oulation b	etween 2	2003 a	nd	2016	in
New	Zealan	d									.8

Figure 3.4: NMDS 2D plot of STs derived from whole chicken carcasses and chicken

Figure 4.4: Rarefaction curves of the human, poultry, ruminants, and environmental water *C. coli* STs. The shaded areas represent the 95% CrI. Note: poultry and ruminants upper boundary of the 95% CrI does not reach the point estimate of the human curve at maximum sample size. The environmental water curve overlaps the human curve.......82

Figure 5.4: Minimum spanning tree of *C. jejuni* STs from 5 different sources between 2008 and 2015 (after intervention). Each node represents a ST, and its diameter is proportional to the number of isolates. The different colours represent different sources.