Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Bioprospecting: The quest for novel extracellular polymers produced by soil-borne bacteria

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

In

Microbiology

at Massey University, Palmerston North,

New Zealand

Jason Smith

2017

Dedication

This thesis is dedicated to my dad.

Vaughan Peter Francis Smith

13 July 1955 – 27 April 2002

Though our time together was short you are never far from my mind nor my heart.

Abstract

Bacteria are ubiquitous in nature, and the surrounding environment. Bacterially produced extracellular polymers, and proteins are of particular value in the fields of medicine, food, science, and industry. Soil is an extremely rich source of bacteria with over 100 million per gram of soil, many of which produce extracellular polymers. Approximately 90% of soil-borne bacteria are yet to be cultured and classified. Here we employed an exploratory approach and culture based method for the isolation of soil-borne bacteria, and assessed their capability for extracellular polymer production. Bacteria that produced mucoid (of a mucous nature) colonies were selected for identification, imaging, and polymer production. Here we characterised three bacterial isolates that produced extracellular polymers, with a focus on one isolate that formed potentially novel proteinaceous cell surface appendages. These appendages have an unknown function, however, I suggest they may be important for bacterial communication, signalling, and nutrient transfer. They may also serve to increase the bacteria's surface area for nutrient adsorption without compromising structural integrity of the cell. The results from this study contribute to the scientific body of knowledge and provide avenues for further research into bacterial appendage formation.

Acknowledgements

I would firstly like to acknowledge and commend the amount of work done behind the scenes by the administration and technical staff of both Massey University and the Institute of Fundamental Sciences, with particular mention to Ann Truter, Andy Trow, and Paul Hocquard. The work you do to ensure everything runs smoothly in the background enables us to pursue our goals with as much energy as possible.

Thanks to my supervisor Prof. Bernd Rehm for allowing me to undertake my project in your lab and doing your best to guide me. Thanks to my co-supervisor Dr. J. Zoe Jordens for being passionate about science and sharing your passion with your students, thank you for your support when things were tough.

Thanks to the members of Rehm Lab for including, assisting, guiding, challenging, supporting, and helping me grow. Especially Yajie Wang, Shuxiong Chen, Majela Gonzalez-Miro, Jason Lee, Andrew Jameson, Jinping Du, Fata Moradali, and Kampachiro Ogura. I wish to extend my best wishes to everyone that worked for PolyBatics while I studied and thank them for their guidance and support. Including Andy Hollings, Lydia, Karen, Leo, David, Mark, and Sasha. We spent many hours together both at work and in social situations and I want to thank you for always having time to help me or have a laugh with me.

Niki Minards and Jordan Taylor from MMIC the amount of time and effort you went through preparing and running the numerous samples I sent down for SEM and TEM is greatly appreciated and I hope you also enjoyed the thrill of discovery made possible with the help of your hard work.

Dr. Dave Wheeler, thank you very much for all of your hard work helping me with the assembly, and analysis of my whole genome work and for creating the amazing Circos plot images.

Thank you to the team down in the chemical store for your work ordering, storing, refilling, and disposing of our various reagents, chemicals, and containers. Thanks also to the teams from the mechanical and electrical workshops who have fixed equipment, and lent tools to the lab.

Although you will never know, thank you so much Christina (Tina) Phillips for developing my love of biology through your clever teaching and methods for

remembering important details. You were an amazing teacher, dean, and friend, you are sorely missed and warmly remembered by all of those you taught and worked with at Melville High School.

Table of Contents

Dedication.	
Abstract	ii
Acknowledg	gementsiii
Table of Co	ntentsv
List of Abb	reviationsix
List of Figur	resxi
List of Tabl	esxiv
Chapter 1:	Introduction1
1.1 B	acterial extracellular polymers and food2
1.2 E	extracellular polymers and medicine
1.3 E	extracellular polymers and industry4
1.4 E	extracellular polymers and the environment5
1.5 B	Sio-prospecting, culturing, and the modern search for polymers6
1.6 A	ims and objectives of this study7
Chapter 2: 1	Materials and Methods8
2.1	Bacterial isolates and reference strains
2.1.1	Bacterial isolates8
2.1.2	Bacterial reference strains8
2.2	Primers9
2.3	Media10
2.3.1	Liquid media10
2.3.2	Solid media10
2.4	Bacterial cultivation conditions11

2.5	Long term storage and revival of bacterial strains and isolates11
2.5.1	Long term storage of bacterial strains and isolates11
2.5.2	Revival of bacterial strains and isolates11
2.6	DNA and molecular cloning11
2.6.1	Polymerase chain reaction
2.6.2	Agarose gel electrophoresis14
2.6.2.1	DNA ladder standards14
2.6.3	Clean-up of PCR products
2.6.3.1	Recovery of DNA fragments from agarose gel15
2.6.4	DNA sequencing15
2.6.5	Genomic DNA isolation
2.6.6	Bacterial identification15
2.7	Isolation of outer membrane proteins16
2.7.1	Cellular harvesting16
2.7.2	Cellular disruption
2.7.2.1	Mechanical cell disruption
2.7.2.2	Enzymatic cell disruption
2.7.3	Enzymatic digestion of outer membrane proteins17
2.7.4	Purification of outer membrane proteins
2.7.4.1	Ultracentrifugation with glycerol gradients18
2.7.4.2	Purification of outer membrane proteins via solubilisation19
2.8	General methods for protein analysis20
2.8.1	Determination of protein concentration20
2.8.2	Sodium dodecylsulfate polyacrylamide gel electrophoresis20

	2.8.2.1	Sample	preparation	for	SDS-PAGE	and	electrophoresis
	condit	ions	•••••	•••••	• • • • • • • • • • • • • • • •	• • • • • • •	22
	2.8.2.2	Protein st	aining and de	staini	ng	• • • • • • •	23
	2.9	Characteri	sation of extra	cellula	r polymers	•••••	23
	2.9.1	Preparatio	n and harvest o	of extr	acellular polyı	mers	23
	2.9.2	Anthrone a	nssay – uronic a	icid de	termination	• • • • • • •	24
	2.10	Bacterial c	apsule	• • • • • • •	••••••	•••••	25
	2.10.1	Capsular e	extraction	•••••	•••••	• • • • • • •	25
	2.11	Standard n	nicrobiological	techni	iques	• • • • • • • •	25
	2.11.1	Gram stain	ning	• • • • • • •	•••••	• • • • • • •	25
	2.11.2	Electron m	nicroscopy	•••••	•••••	•••••	26
	2.11.2.	.1 Transmis	sion electron m	nicrosc	opy sample p	repara	tion26
	2.11.2.	2 Scanning	electron micro	scopy	sample prepai	ration.	27
	2.11.3	Biochemica	al testing	• • • • • • •		• • • • • • •	27
	2.11.4	Sample col	llection and pr	epara	tion	• • • • • • • •	27
Chapt	ter 3: Ro	esults	•••••	•••••		• • • • • • •	29
	3.1	Introduction	on	• • • • • • •	•••••	• • • • • • •	29
	3.2	Generation	and character	isatior	of bacterial is	solates	29
	3.2.1	Isolate X	•••••	•••••	•••••	•••••	30
	3.2.1.1	Electron m	icroscopy imag	ging	•••••	• • • • • • •	30
	3.2.1.2	Genetic and	alysis – 16S <i>rR1</i>	VA end	oding gene sec	quencii	ng32
	3.2.1.3	Extracellul	ar polymer pro	oductio	on	• • • • • • •	32
	3.2.2	Isolate 134		•••••	•••••	• • • • • • • • •	34
	3.2.2.1	Electron m	icroscopy imag	ging		• • • • • • •	34
	3.2.2.2	Genetic an	alysis – 16S <i>rR</i> /	VA end	oding gene sec	quencii	ng37

	3.2.2.3	B Extracellular polymer production	38
	3.2.3	Isolate 133	39
	3.2.3.1	Electron microscopy imaging	39
	3.2.3.2	2 Genetic analysis – 16S rRNA encoding gene and whole gene	ome
	seque	ncing	47
	3.2.3.2	2.1 Whole genome sequence analysis	47
	3.2.3.3	B Extracellular polymer production	52
	3.2.3.3	3.1 Capsular polysaccharide	53
	3.2.3.4	1 Proteomics	55
	3.2.3.5	5 Biochemical testing	59
Chapt	ter 4: 1	Discussion	61
	4.1	Experimental approach	61
	4.2	Bacterial identification and characterisation	62
	4.3	Polymer analysis	65
	4.4	Appendages and proteomic approach	66
	4.5	Future work	69
	4.6	Final thoughts	69
Apper	ndix I:]	BBL Reagents	70
Apper	ndix II:	QUAST Report	71
Apper	ndix III	: Circos Plots	73
Apper	ndix IV	: Gene Tags	98
Apper	Appendix V: Gene ID102		
Apper	ndix Vl	: Gene – Node Position	182
Refer	ences		183

List of abbreviations

A full list of abbreviations used

°C Degrees Celsius

AIA Actinomycete isolation agar

AIB Actinomycete isolation broth

APS Ammonium persulfate

BCA Bicinchoninic acid

BLAST Basic local alignment search tool

BSA Bovine serum albumin

bp(s) Base pair(s)

DMSO Dimethylsulfoxide

DNA Deoxyribonucleic acid

DNase Deoxyribonuclease

dNTPs Deoxyribonucleotide triphosphates

EDTA Ethylenediaminetetraacetic acid

EtOH Ethanol

g Gravity/gram

gyrA DNA gyrase subunit A

k Kilo/thousand

kb Kilo base(s)

kDa Kilo Daltons

LB Luria-Bertani broth

LBA Luria-Bertani agar

MLST Multilocus sequence typing

OMF Outer membrane fraction

parC DNA topoisomerase IV subunit A

PCR Polymerase chain reaction

Psi Pounds per square inch

RNA Ribonucleic acid

RNase Ribonuclease

rRNA Ribosomal ribonucleic acid

rpoB DNA-directed RNA polymerase β-subunit

rpm Revolutions per minute

SDS Sodium dodecyl sulphate

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel

electrophoresis

SEM Scanning Electron Microscopy

TBE Tris-Borate-EDTA buffer

TEM Transmission Electron Microscopy

TEMED Tetramethylethylenediamine

Tris Trishydroxymethylaminomethane

v/v Volume per volume

WEF Whole envelope fraction

w/v Weight per volume

List of Figures

Figure 1	Schematic overview of protein isolation after mechanical disruption	19
Figure 2	Isolate X – mucoid colonies and lawn	30
Figure 3	SEM images of isolate X grown on Actinomycete isolation agar	30
Figure 4	SEM images of isolate X after storage at 4°C for 7 days	31
Figure 5	SEM images of isolate X after storage at 30°C for 7 days	31
Figure 6	Isolate X – <i>Pseudomonas sp.</i> – 16S <i>rRNA</i> gene sequence results BLAST top hit.	
Figure 7	Graphical representation of anthrone assay results	33
Figure 8	Isolate 134 – mucoid colonies and lawn	34
Figure 9	SEM images of isolate 134 grown on Actinomycete isolation agar	34
Figure 10	SEM images of isolate 134 after storage at 4°C for 7 days	35
Figure 11	SEM images of isolate 134 after storage at 30°C for 7 days	36
Figure 12	Isolate 134 – <i>Luteimonas sp.</i> – 16S <i>rRNA</i> gene sequence results BLAST top hit.	
Figure 13	Isolate 133 – mucoid colonies and lawn	39
Figure 14	SEM of isolate 133 reveals striking appendages	40
Figure 15	Temperature and storage have no effect on appendage formation	40
Figure 16	SEM comparison of isolate 133 across solid media	41
Figure 17	SEM imaging of isolate 133 in broth media.	42
Figure 18	TEM images of isolate 133 – outlining features of importance	43
Figure 19	TEM images of bacterial connectivity via an appendage	44
Figure 20	TEM images of bacterial appendage extension.	45
Figure 21	Appendage threads appear to unwind and split	46

Figure 22	Isolate 133 – <i>Raoultella sp.</i> – 16S <i>rRNA</i> encoding gene sequence result and BLAST top hit	
	•	
Figure 23	How to read circos plot information	.50
Figure 24	Circos plot of nodes 1 - 25, displaying GC content, forward, and revelenceding genes, and genetic match	
Figure 25	Circos plot of nodes 26 - 50, displaying GC content, forward, and reve	rse
	encoding genes, and genetic match	52
Figure 26	Nigrosin stain reveals capsule of isolate 133.	.53
Figure 27	TEM image of isolate 133 before capsular extraction.	.54
Figure 28	TEM images of isolate 133 after capsular extraction with 0.1 zwittergent	
Figure 29	TEM images of isolate 133 after capsular extraction with 0.2 zwittergent	
Figure 30	SDS gel of prepared whole cell lysate from isolate 133	.55
Figure 31	SDS gel of membrane fragments from isolate 133 reveals difference ~22 kDa.	
Figure 32	Density difference observed after ultracentrifugation for 20 hours	.57
Figure 33	SEM images of isolate 133 before and after enzymatic digestion	.58
Figure 34	SEM images of isolate 133 before and after enzymatic digestion increased magnification.	
Figure 35	Individual circos plot of node 1	.73
Figure 36	Individual circos plot of node 2	.74
Figure 37	Individual circos plot of node 3	.75
Figure 38	Individual circos plot of node 4	76
Figure 39	Individual circos plot of node 5.	.77
Figure 40	Individual circos plot of node 6	.78

Figure 41	Individual circos plot of node 7	79
Figure 42	Individual circos plot of node 8	80
Figure 43	Individual circos plot of node 9	81
Figure 44	Individual circos plot of node 10	82
Figure 45	Individual circos plot of node 11	83
Figure 46	Individual circos plot of node 12	84
Figure 47	Individual circos plot of node 13	85
Figure 48	Individual circos plot of node 14	86
Figure 49	Individual circos plot of node 15	87
Figure 50	Individual circos plot of node 16	88
Figure 51	Individual circos plot of node 17	89
Figure 52	Individual circos plot of node 18.	90
Figure 53	Individual circos plot of node 19	91
Figure 54	Individual circos plot of node 20.	92
Figure 55	Individual circos plot of node 21	93
Figure 56	Individual circos plot of node 22	94
Figure 57	Individual circos plot of node 23	95
Figure 58	Individual circos plot of node 24	96
Figure 59	Individual circos plot of node 25	97

List of Tables

Table 1	Bacterial isolates isolated in this study	8
Table 2	Bacterial reference strains	8
Table 3	Primers used for 16S <i>rRNA</i> amplification and sequencing	9
Table 4	Primers used for <i>rpoB</i> amplification and sequencing	9
Table 5	Primers used for amplification and sequencing of <i>Pseudomo</i> species	
Table 6	Taq polymerase reaction mixture.	12
Table 7	Pfx polymerase reaction mixture	12
Table 8	PCR conditions for Pfx polymerase.	13
Table 9	PCR conditions for Taq polymerase.	13
Table 10	DNA Ladder: 1 Kb plus.	15
Table 11	Protein marker.	23
Table 12	Harvest of biomass and extracellular polymer from isolate X	33
Table 13	Glucose equivalence of purified extracellular polymer from isolate X	33
Table 14	Raw extracellular polymer production by isolate 134	38
Table 15	parC housekeeping gene comparison.	48
Table 16	gyrA housekeeping gene comparison.	48
Table 17	rpoB housekeeping gene comparison.	49
Table 18	Polymer production by isolate 133.	52
Table 19	GnA+B-ID reaction result comparison for isolate 133, <i>R. terrigena</i> , <i>R. ornithinolytica</i>	
Table 20	Isolate 133, <i>R. terrigena</i> , and <i>R. ornithinolytica</i> – BBL enteric/nonfermenter ID well reaction results comparison	.60