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ABSTRACT

Glasshouse and field studies were carried out to investigate
relationships between plant growth and extractable soil phosphorus and
between fertilizer phosphorus and extractable soil phosphorus respectively.
The purpose of the studies was to provide information with which to
quantify the parameters of a simple model designed to predict relative
pasture yield as a function of soil and fertilizer phosphorus.

The relationship between yield and water-extractable soil P
differed markedly between two soils of different P retention properties
in glasshouse studies using both intact cores and conventional pots.

To illustrate this difference, the levels of water-extractable P

(0-8 cm depth) in intact cores required for 907 of maximum yield were
12.7 and 2.6 ug/g soil in the soils of lower and higher P retention
respectively. In contrast, the relationship between yield and Olsen
(bicarbonate-extractable) P was much less soil type dependent. The
corresponding levels of Olsen P in intact soil cores required for 90%
of maximum yield were 17.7 and 17.8 pg/g soil respectively. For
modelling purposes, the Olsen procedure was therefore considered to
provide a more suitable index of plant available soil P from which to
predict pasture production on soils differing in P retention.

The proportion of vield variation accounted for by differences in
extractable soil P was 257 or less in initial harvests from the intact
cores, 50-75% in later harvests from the intact cores and 89-977 in the
pot experiments. The results of the intact core experiments, however,
were considered to be more directly applicable to the field situation
than were the results of the pot experiments.

Seasonal changes in extractable soil P in Tokomaru silt loam included
an increase during the dry season to reach a peak in late autumn followed
by a decline in winter. The magnitude of these changes with respect
to Olsen P was approximately 2.5 and 5 pg/g soil in the 0-8 cm and 0-4 cm
depths respectively. A subsequent decline in extractable soil P during
the spring and second summer was attributed largely to plant uptake of
soil P and its loss in discarded clippings.

The application of superphosphate increased extractable soil P in
proportion to the rate applied. The increases per unit of applied
fertilizer P, in both absolute terms and relative to an initial (time-zero)

increase, were greater in a soil of low P retention (Tokomaru) than in a
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soil of high P retention (Ramiha). Water—extractable P (0-8 cm depth) was
increased on average by 2.3 and 0.2 pg/g in the Tokomaru and Ramiha soils
respectively six months after the application of 40 kg P/ha as super-
phosphate. The corresponding average increases in Olsen P (2.7 and 1.1
ug/g) were greater, and differed less between the soils, than the increases
in water-extractable P. Thus, neither soil P extraction procedure

was independent of soil type in terms of the effects of applied

fertilizer P. For modelling purposes the effects of applied fertilizer
would need to be assessed in a wider range of soils.

The level of water-extractable P in stored, air-dry soils was found
to undergo short-term fluctuations, apparently due to changes in the
conditions of extraction such as variations in the pH of distilled water.
Longer-term increases of 25-100% in the level of water-—extractable
P of stored soils also occurred. No reason for the latter changes was

apparent.
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CHAPTER 1

INTRODUCTION

The use of fertilizer, particularly phosphate fertilizer, has
played a vital role in the productivity of New Zealand agriculture. The
total amount of fertilizer used has steadily increased over the years,
surpassing one million tonnes per annum in the mid-1950's and two
million tonnes per annum in the mid-1960's. During the last fifteen
years, between 1.7 m and 2.5 m tonnes per annum have been applied to
New Zealand soils (Ministry of Agriculture and Fisheries, 1978).
Variation between years, sometimes considerable, has reflected the over-
riding influence of the financial state of the farming industry on
fertilizer use.

Most fertilizer used on New Zealand farms is manufactured from
imported raw materials, the balance being imported in
manufactured form. The total value of imported fertilizer materials is
currently of the order of $100 m per annum, of which about 65% is for
raw rock phosphate and other phosphatic fertilizers (Ministry of
Agriculture and Fisheries, 1978). Phosphate fertilizer is
therefore not only a very important resource in New Zealand agriculture,
but is also a very expensive one. Despite this, phosphate fertilizer
applied to grazed pastures in recent vears appears to have exceeded the
maintenance requirements of New Zealand's livestock population
(Karlovsky, 1975). Syers (1974) similarly concluded that fertilizer
usage may be excessive, at least on certain soils, and in view of the
inevitable increases in the price of phosphate fertilizer, considered
there was a need for further research on the efficiency of fertilizer use
on many soils.

Technically, efficient fertilizer use requires that wastage of
fertilizer through the application of excessively high rates is avoided.
Optimum fertilizer rates can be determined in specific situations
by conducting field trials to measure the response of pasture to
various rates of application. Such trials are often used to calibrate
soil tests which are then used to assess the nutrient status of soils
in areas where there is no information available from field trials.

A largely untested method, particularly in New Zealand, of evaluating

fertilizer use in relation to optimum rates, times and frequencies of



application, is systems modelling or morc specifically the mathematical
simulation of soil-plant relationships. Systems modelling has been defined
as an activity involving the construction of a mathematical model of
a system, generally but not necessarily followed by manipulation or
experimentation with the model (Wright, 1976). A recent example of
systems modelling in New Zealand is the development of a simulation model
of an intensive pastoral beef grazing system, including soil, pasture,
animal and management components, by Wright et al (1976). 1In the pasture
component of this model, the potential growth rate of rvegrass-white
clover pasture on any given day is determined by time of year and
accumulated level of dry matter. The estimated potential growth rate
is then modified by a temperature factor and a soil moisture factor to
give actual growth rate.

A deficiency of the pasture growth model, however, is the absence
of any soil nutrient component. To enable evaluation of the effects of
alternative phosphate fertilizer policies on simulated pasture production,
an attempt was made to develop a simple phosphorus (P) submodel (Smith et al,
1977). The overall pasture model would then integrate the separate effects of
soil moisture supply, temperature and phosphate supply on plant growth.

The P submodel is based on two basic assumptions. The first is that
relative pasture vield can be predicted from the level of plant available
soil P if the relationship between these two variables is known.
Extractable soll P is used as an index of plant available soil P because
of problems associated with the definition and rapid measurement of the
latter fraction. The relationship between relative yield (RY) and the
level of extractable soil P (x) is represented in the P submodel by an
exponential equation of the form:

~e

RY = 1 - 28
where A is maximum attainable vield, B is the difference between maximum
yield and actual yield when x = 0, and ¢ is the curvature coefficient.

If yield is zero when x = 0, then the equation simplifies to:
RY = 1 - e~CX
Ideally, the soil P extraction procedure should be independent of soil

type so that the magnitude of the ¢ coefficient does not vary between

different soils.



The second assumption made in the P submodel is that the level of
extractable soil P at any given time can be predicted if it is known
how the level changes over time and in response to applied fertilizer
P. The relationship between the amount of fertilizer P applied (F)
and the level of extractable soil P is represented in the P submodel

by a linear equation of the form:

Xp = X1 t+ bF

where x; and x; are levels of extractable soil P before and after fertilizer
applicationaand b is the unit change in x per unit of applied F. The
magnitude of the b coefficient can be expected to decrease with time as

the extractability of the applied P declines.

Before the P submodel can be used to evaluate alternative fertilizer
policies, it is necessary to know what values should be assigned to the
coefficients in the equations representing the relative yield-soil P
and fertilizer-soil P relationships. Unfortunately, there is a distinct
lack of this type of information in relation to phosphate fertilizer use
on New Zealand pasture soils. The aim of this study was to

quantitatively investigate the above relationships.





