

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE DEVELOPMENT OF A PURIFICATION PROCEDURE FOR <u>PEPTIDE:N-GLYCOSIDASE A</u> FROM PRUNUS AMYGDALUS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University.

> Angela Corinne van Diepen 1997

ABSTRACT

Peptide- N^4 -(*N*-acetyl- β -glucosaminyl) asparagine amidases cleave the amide bond between N-linked glycans at N-acetylglucosamine and asparagine, liberating intact oligosaccharide chains from glycoproteins. Although PNGase A is commonly used by glycobiologists for removal of N-linked glycans from plant sources, much less is known about it than about PNGase F, an enzyme that is more commonly used for deglycosylating proteins.

New studies on PNGase A have been initiated, with the aim of carrying out complete biochemical and structural studies in order to determine the substrate specificity, isoelectric point, primary, secondary and tertiary structures. Comparisons will then be made with PNGase F, whose three-dimensional structure is known.

The first step in these studies is therefore to obtain some pure protein and amino acid sequence. Although purification protocols have been published previously, it was difficult to produce a homogeneous preparation following these methods and they have hence been modified. The methods used are described in *Chapter 2* and the results of four preparations, using almond meal and almond emulsin as starting materials, are reported in *Chapters 3-6*.

Although PNGase A had not been purified to homogeneity, an active band excised from a native gel and analysed by SDS-PAGE showed four major bands. Which band represents PNGase A remains to be determined.

ACKNOWLEDGEMENTS

This investigation would not have been possible without the help from many people.

Firstly, I would like to sincerely thank my supervisor Gill Norris for the large amount of time she had spent teaching me laboratory techniques, reading this manuscript and her keen and constant help over the last couple of years. Her helpful advice, patience and encouragement was very much appreciated.

I would also like to thank Jo Mudford, for doing the N-terminal sequencing of my samples and Dick Poll, for his help on the use of the FPLC and SMART systems.

I am indebted to the generosity of Assoc. Prof. David Harding for the almond emulsin, which greatly aided my studies.

A final thank-you to my parents, friends, classmates, lab-mates and many staff, for your support throughout my postgraduate years.

LIST OF ABBREVIATIONS

BCA	Bicinchoninic acid
BME or βME	β -mercaptoethanol
BSA	Bovine serum albumin
СМ	Carboxymethyl
DEAE	Diethylaminoethyl
DIG	Digoxigenin
EDTA	Ethylenediamine tetra-acetic acid (di-sodium salt)
ENGase	Endo-N-acetyl-β-D-glucosaminidase or endoglycosidase
FPLC	Fast protein liquid chromatography
GLC	Gas-Liquid chromatography
HCl	Hydrochloric acid
HPLC	High performance liquid chromatography
NaAc	Sodium acetate buffer
NH ₄ Ac	Ammonium acetate buffer
$(\mathrm{NH}_4)_2\mathrm{SO}_4$	Ammonium sulphate
PAGE	Polyacrylamide gel electrophoresis
PMSF	Phenyl methyl sulfonyl fluoride
PNGase	Peptide- N^4 -(N-acetyl- β -D-glucosaminyl) asparagine amidase A
PVDF	Polyvinylidene difluoride
Q- or QAE	Quaternary amino (hydroxypropyl diethyl aminoethyl)
RPC	Reverse phase chromatography
SDS	Sodium dodecyl sulphate
TFA	Trifluoroacetic acid
TRIS	Tris(hydroxymethyl)aminomethane

Three and one letter code for amino acids

Ala	A	Alanine

Arg R Arginine

Asn N Asparagine

Asp D Aspartic acid

Cys C Cysteine

Gln Q Glutamine

Glu E Glutamic acid

Gly G Glycine

His H Histidine

Ile I Isoleucine

Leu L Leucine

Lys K Lysine

Met M Methionine

Phe F Phenylalanine

Pro P Proline

Ser S Serine

Thr T Threonine

Tyr Y Tyrosine

Val V Valine

H_s Homoserine lactone

Sugar abbreviations

GlcNAc	N-acetylglucosamine	Fuc	fucose	
GalNAc	N-acetylgalactosamine			

Linkages are described using conventional carbon ring numbers connected by a slash and anomericity is denoted by α or β . For example: fuc α 1-3 linked to GlcNAc.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract	ü
Acknowledgements	iii
List of Abbreviations	iv
Three and One Letter Amino Acid Code	v
Table of Contents	vi
List of Figures	х
List of Tables	xiv

Chapter I		Introduction	1
1.1		Introduction to Carbohydrates	1
1.2		Glycoproteins	3
	1.2.1	N-linked Oligosaccharides	3
	1.2.2	O-linked Oligosaccharides	5
	1.2.3	Function of the Oligosaccharide Moiety	5
1.3		Deglycosylation	7
	1.3.1	Introduction	7
	1.3.2	ENGases	9
	1.3.3	PNGases	10
	1.3.4	PNGase A	13
1.4		Functions of PNGases	15
1.5		Scope of this work	19
Chapter II		Materials and Methods	21
2.1		Materials	21

2.2	Methods		24
	2.2.1	Overview of the Purification of PNGase A	24

			PAGE
2.2.2		Details of Procedures Used in the Four	
		Preparations of PNGase A	26
	(a)	Extraction	26
	(b)	Centrifugation	26
	(c)	Salt Removal by Dialysis	26
	(d)	Anion Exchange Chromatography	27
	(e)	Acidification with 1 M Acetic Acid	27
	(f)	Hydrophobic Interaction Chromatography	
		Using Phenyl Sepharose	27
	(g)	Ammonium Sulphate Fractionation	28
	(h)	Cation Exchange Chromatography	28
	(i)	Sodium Thiocyanate and B-Mercaptoethanol	
		Incubation	29
	(j)	Gel Filtration Chromatography	30
	(k)	Hydrophobic Interaction Chromatography	
		Using Phenyl Superose	30
	(1)	Mono-Q Anion Exchange Chromatography	31
	(m)	Affinity Chromatography Using Concanavalin A	31
2.2.3		General Methods	32
	(a)	Bicinchoninic acid (BCA) Total Protein	
		Determination	32
	(b)	PVDF Membrane Blotting for N-terminal	
		Sequencing	32
	(c)	Electroelution of PNGase A from Non-denaturing	
		Gels	33
	(d)	Protocol for Endoglycosidase Assays	34
	(e)	DIG Glycan/Protein Double Labelling	38
	(f)	Mass Spectroscopy	40
	(g)	Urea Gel Electrophoresis	40
	(h)	Molecular Weight Curve of SDS Markers for	
		Protein Molecular Weight Determination	41
2.2.4		Summary of Purification Steps	42

.

vii

Chapter II	I	Results of Preparation 1	43
3.1		Purification Using Almond Meal	43
	(a)	Ion Exchange Chromatography	43
	(b)	NaSCN and BME Incubation	44
	(c)	Gel Filtration Using FPLC	45
	(d)	Mono-Q Ion Exchange Chromatography	47
	(e)	Gel Filtration Using FPLC	49
	(f)	NaSCN and BME Incubation	50
	(g)	Hydrophobic Interaction Chromatography	51
Chapter IV	7	Results of Preparation 2	55
4.1		Preliminary Study Using Almond Meal	55
	(a)	DEAE Ion Exchange Chromatography	55
	(b)	Phenyl Sepharose Chromatography	56
	(c)	FPLC Phenyl Superose Chromatography (HR 5/5)	58
Chapter V		Results of Preparation 3	63
5.1		Purification Using Almond Meal	63
	(a)	DEAE Ion Exchange Chromatography	63
	(b)	Phenyl Sepharose Chromatography	63
	(c)	Ammonium Sulphate Fractionation	64
	(d)	Cation Exchange Chromatography	67
	(e)	Gel Filtration Using FPLC	73
	(f)	NaSCN and BME Incubations	75
	(g)	Phenyl Superose FPLC	75
	(h)	N-Terminal Sequencing	77
	(i)	DIG Glycan and Protein Double Labelling	78
	(j)	Affinity Chromatography Using Concanavalin A	79
	(k)	Native Gel Trials	82
	(1)	Gel Filtration Chromatography	83
	(m)	Urea Gel Analysis	85
	(n)	Second DIG Stain Analysis	89

viii

Chapter VI	Results of Preparation 4	91
6.1	Purification Using Almond Emulsin	91
(a)	Anion Exchange Chromatography	91
(b)	Cation Exchange Chromatography	91
(c)	Sodium Thiocyanate and B-Mercaptoethanol Incubation	93
(d)	Phenyl Sepharose Hydrophobic Interaction	
	Chromatography	93
(e)	Gel Filtration Chromatography	97
(f)	Gel Filtration Using FPLC (Scaled Up)	104
(g)	Gel Filtration Using the SMART System	105
(h)	Glycan Determination by DIG Staining	107
(i)	Affinity Chromatography with Concanavalin A Sepharose	108
(j)	Ultrafiltration Studies	109
(k)	Urea Gel Trials	113
(1)	Native Gel Experiments	115
(m)	N-Terminal Sequencing	118

Discussion

Chapter VII

References

130

123

LIST OF FIGURES

<u>FIGURE</u>

PAGE

1.1	Condensation reaction between two monosaccharides	2
1.2	Different configurations of monosaccharides	2
1.3	An oligosaccharide N-linked to asparagine	3
1.4	The three classes of N-linked glycans	4
1.5	Site cleaved by ENGases	10
1.6	The β -aspartylglucosylamine bond cleaved by PNGases	11
1.7	The two step reaction catalysed by PNGases which shows	
	the enzyme to be an amidase	12
2.1	The chromatograms from the PNGase assay	35
2.2	Mechanism of assay: Cleavage of the glycan from the	
	ovalbumin glycopeptide, by PNGase A	36
2.3	The homoserine lactone ring formation	37
2.4	Curve generated by plotting the molecular weight of the low	
	range molecular weight standards run on a 12% SDS	
	polyacrylamide gel vs. the distance migrated from the dye	
	front, in centimetres	41
3.1	Chromatogram of elution from Q-Sepharose	43
3.2	SDS gel of fractions across the two peaks eluted from	
	Q-sepharose which contained PNGase activity	44
3.3	Chromatogram of pool 2 subjected to gel filtration, using FPLC	46
3.4	SDS gel of gel filtration fractions which contained PNGase	
	activity	46
3.5	Chromatogram of the elution from Mono-Q ion exchange	
	chromatography	47
3.6	SDS gel of active fractions from Mono-Q elution	48

<u>FIGURE</u>

xi

3.7	SDS gel of pool 1: fractions spanning the peaks eluted	
	by gel filtration	49
3.8	SDS gel of pool 2: fractions spanning the peaks eluted	
	by gel filtration	49
3.9	Chromatogram from phenyl superose elution, equilibrated	
	with ammonium sulphate	51
3.10	Chromatogram of phenyl superose elution with sodium chloride	52
3.11	SDS gel of sample containing PNGase, after phenyl superose	
	chromatography	53
4.1	SDS gel of current protein samples	56
4.2	Phenyl sepharose sample load and rinse with 10 mM $NH_4Ac/$	
	2 M NaCl, pH 5.5	57
4.3	Phenyl sepharose elution of bound proteins with a gradient	
	from 10 mM NH ₄ Ac/ 2 M NaCl, pH 5.5 to 10 mM NH ₄ Ac,	
	рН 5.5	57
4.4	Run 1. Phenyl superose chromatogram showing the elution	
	of PNGase A with a gradient from 10 mM NH ₄ Ac/2 M	
	NaCl, pH 5.5 to 10 mM NH₄Ac, pH 5.5	59
4.5	Run 2. Phenyl superose chromatogram showing the elution	
	of PNGase A with a gradient from 10 mM $NH_4Ac/3$ M	
	NaCl, pH 5.5 to 10 mM NH₄Ac, pH 5.5	59
4.6	SDS gel of samples from phenyl sepharose and phenyl	
	superose chromatography	60
4.7	SDS gel of final protein products	61
5.1	Chromatogram of phenyl sepharose elution	64
5.2	SDS gel of ammonium sulphate fractions	66
5.3	SDS gel of the supernatants at different pH values, which	
	contained proteins not bound to CM-Sephadex	69

xii

5.4	SDS gel of the supernatants at different pH values, which	
	contained proteins that bound to the CM-Sephadex resin	69
5.5	Chromatogram of CM-Sephadex loading of protein solution	
	and wash with 10 mM NH ₄ Ac, pH 5	70
5.6	Chromatogram of CM-Sephadex protein elution by gradient	
	application from equilibration buffer to 10 mM NH ₄ Ac/0.15 M	
	NaCl, pH 5	71
5.7	CM Sephadex protein elution at high salt	71
5.8	SDS gel of fractions across the active peak eluted from	
	CM-Sephadex	72
5.9	Chromatogram from gel filtration, using FPLC	74
5.10	SDS-PAGE of the pooled active fractions from gel filtration	74
5.11	Chromatogram of phenyl superose chromatography	75
5.12	SDS-PAGE of pooled and concentrated fractions containing	
	PNGase activity, after phenyl superose chromatography	76
5.13	The DIG glycan and protein labelled PVDF blot	78
5.14	Chromatogram of sample application to Concanavalin A	
	and rinse	81
5.15	Chromatogram of Concanavalin A elution	81
5.16	SDS gel of active fractions pooled and concentrated from	
	Concanavalin A chromatography	82
5.17	Chromatogram representative of the five pools of active	
	PNGase fractions after gel filtration using FPLC	83
5.18	SDS gel of fractions spanning the peak eluted by gel	
	filtration	84
5.19	Urea gel of a protein sample containing PNGase A	85
5.20	SDS gel of protein electroeluted from the urea gel	86
5.21	Chromatogram of PNGase active sample subjected to gel	
	filtration, following urea gel electroelution	87

FIGURE		PAGE
5.22	SDS-PAGE of fractions after gel filtration (SMART)	
	which followed electroelution from a urea gel	88
5.23	DIG stain showing the proteins and glycosylated proteins	
	contained in a sample with PNGase activity	89
6.1	CM-Sephadex protein elution	92
6.2	Phenyl sepharose column wash and elution	93
6.3	SDS gel of fractions which contain PNGase activity, from	
	each stage of the purification to date	94
6.4	SDS gel of protein solutions which do not contain PNGase	
	activity, from each stage of the purification to date	94
6.5	Gel Filtration on the SMART System using Superdex-75 (3.2/30)	98
6.6	Superdex-75 gel filtration on the SMART System of the	
	protein solution containing PNGase A	99
6.7	Superdex-75 gel filtration on PNGase A solution and	
	marker proteins	100
6.8	Active fractions of PNGase A re-chromatographed by gel	
	filtration on Superdex-75 using the SMART System	102
6.9	SDS gel of re-chromatographed active fractions from	
	SMART	103
6.10	Gel filtration of protein solution containing PNGase A,	
	using FPLC	104
6.11	SDS gel of active fractions after gel filtration	105
6.12	SDS gel of fractions across the active peak of about 66 kDa	106
6.13	DIG glycan and protein double labelled stain of the most	
	active PNGase sample, from a PVDF blot	107
6.14	SDS gel of the results from Concanavalin A chromatography	109
6.15	SDS gel of retentates and filtrates from ultrafiltration	111
6.16	Urea gel of samples containing PNGase activity	113
6.17	SDS gel of protein electroeluted from the previous urea gel	114
6.18	SDS gel of protein electroeluted from native and urea gels	116

LIST OF TABLES

TABLE

1.1	Some ENGases and their source	8
1.2	PNGases and their source	9
1.3	Other enzymes involved in deglycosylation	9
1.4	Differences between PNGase F and PNGase A	15
2.1	Supports used in chromatography	23
2.2	PNGase assay gradient programme	34
5.1	Ammonium sulphate fractionation trials	65
5.2	CM-Sephadex trials using a batch method to determine the	
	relative binding abilities of PNGase A to resins equilibrated	
	at different pH values	67
5.3	Elution of bound proteins from the CM-Sephadex resin,	
	with 1 M NaCl	68
5.4	Partial N-terminal sequence of the 54 kDa band	77
5.5	Total protein estimates (by absorbance at 280 nm)	90
6.1	Total protein amounts for active samples	97
6.2	Assays on filtrates from ultrafiltration using a 50 K membrane	110
6.3	Assays on filtrates from ultrafiltration using a 30 K membrane	110
6.4	Repeated assays on retentate and filtrate from 30 K	
	ultrafiltration	111
6.5	Summary of band locations in non-denaturing gels	117
6.6	N-Terminal Sequencing of bands seen in an SDS Gel, an	
	active peak after gel filtration and a native gel blot	118
7.1	Approximate molecular weights of proteins present in	
	samples after each chromatographic method	124