

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Development of Reference ELISA Assays For Urinary Oestrone-3 α-Glucuronide and Pregnanediol-3 α-Glucuronide Using Timed Urine Specimens

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry

at Massey University, Palmerston North, New Zealand

JANETTE ELIZABETH BINNIE 1999

Abstract

Enzyme-linked immunosorbent assays (ELISA) have been developed which measure oestrone glucuronide (E1-3G) and pregnanediol glucuronide (PdG) in timed, diluted urine samples. Measurement of these urinary metabolites allows information to be collected, non-invasively, on the hormonal interplay between the ovaries and the hypothalamicpituitary axis, which determines or helps to make predictions about the potentially infertile and fertile phases of the human menstrual cycle.

Immunoglobulin Class G (IgG) antibodies raised in sheep against the analyte of interest (E1-3G and PdG) were adsorbed onto polystyrene microtitre wells. The enzyme conjugate tracer was horseradish peroxidase (HRP), and was prepared by conjugation with either E1-3G or PdG using the active ester coupling procedure. A direct competitive immunoassay configuration in which both analyte and tracer were added to the wells simultaneously allowed a direct competition between them for the immobilised antibody sites. A chromogenic detection system involving o-phenylenediamine (OPD) was used for the measurement of the amount of bound tracer (HRP conjugate) which could be related to the amount of analyte in a urine sample.

The sensitivity of the E1-3G assay was 3.4 nmoles/ 24 h, and for the PdG the sensitivity was 0.5 µmoles/ 24 h. Both assays were reliable, and were successfully validated against World Health Organisation (WHO) assays performed on the same urine samples in a multicentre study of the Ovarian Monitor (project #90905).

The E1-3G and PdG reference assays developed in the present study are acceptable for use in the laboratory and can be used to validate new non-instrumental colour tests, or other home fertility kit assays currently being developed.

Acknowledgements

My thanks particularly to my supervisor Associate Professor Leonard Blackwell for his enthusiastic encouragement and guidance during this work.

I am grateful to my Biochemistry colleagues Bryce Cummock and Delwyn Cooke for their assistance during the first few months of this research. Thanks also to Dr Yinqiu Wu and Dr Mark Smales for their discussions with me concerning the organic chemistry components of my work. I very much appreciate the thoughtful and conscientious way in which Dr Simon Brown fulfilled his role as my second supervisor.

Thanks to Dr Keith Henderson of AgResearch for his invaluable help with setting up the ELISA, and for his clear and uncomplicated telephone conversations during the various trouble shooting expeditions with ELISA.

To my partner John for his wit, passion for cooking, and good nature which ensured that home was a tranquil haven in which to study, thank you.

Table of Contents

	Page
Abstract	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	ix
List of Tables	xvi
Abbreviations	xviii

Chapter One: General Introduction

1.1 Oestrone-3 α-Glucuronide (E1-3G) and Pregnanediol-3 α-Glucuronide			
	(PdG):	Their Relationship to Ovarian Function	1
	1.1.1	Regulation and Control of Ovarian Function	1
	1.1.2	Steroidogenesis	5
	1.1.2.1	Follicle Dominance	10
	1.1.2.2	The Potentially Fertile Phase	10
	1.1.3	Fertility Markers	11
	1.1.3.1	Self-Observed Indicators	11
	1.1.3.2	Urinary Steroids	12
	1.1.4	Choice of Steroid Markers	13
	1.1.4.1	Choice of Oestrogen as a Marker for the Beginning of the	
		Potentially Fertile Phase	13
	1.1.4.2	Oestrogen Metabolism	14
	1.1.4.3	Excretion Profile of E1-3G	16
	1.1.4.4	Marker for the End of Fertility: Choice of Progesterone	18
	1.1.4.5	Excretion Profile of PdG	19
	1.1.4.6	Sensitivities Required for E1-3G and PdG Assays	21

	1.1.5	The Ovarian Monitor	21
	1.1.5.1	The Limitations of the Ovarian Monitor	24
1.2	Review	v of Immunoassay Techniques	26
2	1.2.1	Enzyme-Linked Immunosorbent Assay (ELISA)	27
	1.2.2	Properties of Horseradish Peroxidase for Use	
		as an Enzyme Detection System	29
	1.2.3	Immunoglobulins (Antibodies)	31
	1.2.4	Properties of Passive Adsorption and Desorption of Proteins	
		from Plastic	33
	1.2.4.1	Passive Adsorption of Proteins to Plastic	33
	1.2.4.2	Desorption of Proteins from Plastic	35
	1.2.4.3	Polystyrene vs Blotting Membranes	36
	1.2.4.4	Blocking Agents	36
	1.2.5	Immunochemical Interactions at Fluid Solid-Phase Interfaces	37
1.3	Aims	of the Present Study	39

Chapter Two:Development of an ELISA assay for Oestrone-3
α-Glucuronide (E1-3G) in timed urine samples.

2.1	Introd	uction	40
2.2	2 Materials and Methods		44
	2.2.1	Equipment	44
	2.2.2	Reagents	45
	2.2.3	Buffers	46
	2.2.4	E1-3G standards	47
	2.2.5	Urine samples (WHO)	48
	2.2.6	Methodology	48
	2.2.6.1	Conjugation of E1-3G to Horseradish Peroxidase	48
	2.2.6.2	Protocol for Horseradish Peroxidase Activity Assay	51
	2.2.6.3	Production of Oestrone-3 α-Glucuronide (E1-3G) Antisera	52
	2.2.6.4	Preparation of E1-3G Antibody	52

v

	2.2.6.5	Ovarian Monitor Protocol	52
	2.2.6.6	Inhibition Assays Using the Ovarian Monitor	52
	2.2.6.7	Enzyme-Linked Immunosorbent Assay (ELISA) Protocol	53
	2.2.6.8	Calculation of E1-3G Levels from the Standard Curve	54
2.3	Result	s and Discussion	55
	2.3.1	Coupling of Horseradish Peroxidase to E1-3G	55
	2.3.1.1	The Difficulty of Knowing How Much Conjugate	
		is Present in the Sample	61
	2.3.2	Purification and Estimation of E1-3G-Antibody	64
	2.3.3	Optimization of Assay Parameters	66
	2.3.4	Generation of an E1-3G Standard Curve	70
	2.3.4.1	E1-3G and E1-3G-HRP Amounts Per Microwell (ng/well)	75
	2.3.5	Evaluation of the ELISA E1-3G Standard Curve	78
	2.3.5.1	Sensitivity	78
	2.3.5.2	Inter-Assay Reliability	80
	2.3.5.3	Cross-Reactivity	82
	2.3.5.4	Urine Blank Effect	85
	2.3.6	Use of the ELISA E1-3G Assay to Measure Menstrual Cycle Urines	88
	2.3.6.1	Comparisons Between 16 h (Overnight) and 2 h Incubation	92
	2.3.7	Conclusion(s)	100

vi

Chapter Three: Development of an ELISA assay for Pregnanediol-3 α-Glucuronide in timed urine samples.

3.1	Introd	luction	101
3.2	Mater	ials and Methods	103
	3.2.1	Equipment	103
	3.2.2	Reagents	104
	3.2.3	Buffers	105
	3.2.4	PdG Standards	106
	3.2.5	Urine Samples (WHO)	106

				vii
		3.2.6	Methodology	107
		3.2.6.1	Conjugation of PdG to Horseradish Peroxidase	107
		3.2.6.2	Protocol for Horseradish Peroxidase Activity Assay	107
		3.2.6.3	Production of Pregnanediol-3 α-Glucuronide Antisera	107
		3.2.6.4	Ovarian Monitor Protocol	108
		3.2.6.5	Inhibition Assays Using the Ovarian Monitor	108
		3.2.6.6	Enzyme-Linked Immunosorbent Assay (ELISA) Protocol	108
		3.2.6.7	Calculation of PdG Levels from the Standard Curve	109
		3.2.6.8	Quality Control Procedure	109
3.3		Result	s and Discussion	110
		3.3.1	Coupling of Horseradish Peroxidase to PdG	110
		3.3.2	Estimation of PdG-Antibody Binding Sites	112
		3.3.3	Optimization of Antibody-Enzyme Concentrations	114
		3.3.3.1	PdG-HRP and PdG-Antibody Dilutions (ng/well)	114
		3.3.4	Optimal Amount(s) of PdG standard and PdG Conjugate	116
		3.3.5	Evaluation of the ELISA PDG Standard Curve	127
		3.3.5.1	Sensitivity	127
		3.3.5.2	Inter-Assay Reliability	129
		3.3.5.3	Cross-Reactivity	131
		3.3.5.4	Non-Specific Binding	134
		3.3.6	Use of the ELISA PdG Assay to Measure Menstrual Cycle Urines	137
		3.3.6.1	Subject 021 R, Menstrual Cycle 6	138
		3.3.6.2	Subject 023 B, Menstrual Cycle 2	141
		3.3.6.3	Monitoring the Performance of the PdG Assay	141
	341	3.3.7	Conclusion(s)	143

Chapter Four: Validation of the E1-3G and PDG ELISA Assays

4.1	Introduction	144
4.2	Materials and Methods	145
	4.2.1 Urine Samples	145

			viii
4.3	Result	s and Discussion	145
	4.3.1	Comparison of E1-3G ELISA with Ovarian Monitor Data	145
	4.3.1.1	Subject 21 R, Menstrual Cycle 6	145
	4.3.1.2	Combined E1-3G and PdG Excretion Profiles	149
	4.3.1.3	Subject 14 X, Menstrual Cycle 5	154
	4.3.2	Comparison of PdG ELISA Data with Reference RIA Data	156
	4.3.2.1	Subject 20 K, Menstrual Cycle 1	156
	4.3.2.2	Subject 002 F, Menstrual Cycle 2	158
	4.3.2.3	Subject 23 B, Menstrual Cycle 2	158
	4.3.2.4	Subject 009 D, Menstrual Cycle 2	162
	4.3.2.5	Subject 014 X, Menstrual Cycle 1	162
	4.3.2.6	Subject 023 B, Menstrual Cycle 1	166
	4.3.2.7	Summary	167
	4.3.3	Longitudinal Perimenopausal Clinical Study of E1-3G and PdG	170
4.4	Concl	usion	178

2.5	The E1-3G-HRP elution profile following a step gradient programme	
5	using an Econo system attached to a CM sepharose cation exchange	
	column.	58
2.6	Elution profile of E1-3G-HRP after repeat gel filtration column	
	chromatography.	60
2.7	Different hypothetical binding patterns of E1-3G-HRP conjugate to	
	immobililized antibody with one ligand, and the conjugate with	
	multiple ligands at different positions.	63
2.8	Inhibition assays using the Ovarian Monitor to assess E1-3G	
	antibody concentrations before and after the ammonium sulphate	
	precipitation procedure.	65
2.9	The relative concentration error as a function of transmittance for a	
	1% uncertainty in percentage transmittance.	67
2.10(a)	The initial checkerboard titrations of E1-3G antibody dilutions	
	against E1-3G-HRP conjugate dilutions.	69
2.10(b)	Checkerboard titration of E1-3G antibody dilutions up to a 1/24,000	
	dilution of conjugate.	69
2.10(c)	Checkerboard titrations: Effects of increasing the conjugate dilutions	
	on the colour development for a series of antiserum dilutions.	69
2.10(d)	Checkerboard titrations using high HRP conjugate dilutions with a	
	series of antibody dilutions.	69
2.11	Effect of varying the volume of E1-3G standard on the E1-3G	
	standard curves.	71
2.12	A series of standard curves generated with E1-3G standards.	71
2.13	Standard curves constructed using varying amounts of E1-3G-HRP	
	conjugate.	73
2.14	Standard curves generated using lower E1-3G standards and an E1-	
	3G standard containing a high E1-3G level.	74
2.15	Normalised E1-3G standard curves (n=12) from six different ELISA	
	microtitre plates.	81

.

x

2.16	The E1-3G control standard curve, and the oestrone dose	
.* E	response curve used to determine the percentage of cross	
	reacting of oestrone with E1-3G antibodies.	84
2.17	The E1-3G control standard curve and the oestrone	
	sulphate dose response curve used to determine the	
*	percentage of cross reacting of oestrone sulphate with E1-	
	3G antibodies.	84
2.18	The effects of adding varying amounts of blank urine on	
	the E1-3G standard curve, (a) before correction for urine	
	volumes, and (b) after correction for urine volumes.	86
2.19	The E1-3G standard curve spiked with urine and an	
	unspiked control E1-3G standard curve.	87
2.20	The sixth menstrual cycle of a subject in the WHO study	
	(21R): cycle days are plotted against the absolute E1-3G	
	levels obtained using the ELISA assay.	89
2.21	The effects of an increased amount of urine sample on the	
	urines from the sixth menstrual cycle from subject 21R from	
	the WHO study.	91
2.22	Theoretical kinetic binding curves.	94
2.23	The fifth menstrual cycle from subject 14X of the WHO	
	study, using a 16 h incubation.	96
2.24	The fifth menstrual cycle from subject 14X of the WHO	
	study, using a 2 h incubation.	96
2.25	The fifth menstrual cycle from subject 14X from the WHO	
	study repeated using a 16 h incubation.	97
2.26	A set of 4 ELISA assays, (a) and (b) were incubated for 2 h	
	and (c) and (d) were incubated for 16 h.	98
2.27	The effects of incubation time (2 h, and 16 h) on the position	
	of the E1-3G standard curves using the ELISA assay.	99
3.1	The PdG-HRP conjugate elution profile generated after gel	
	(G-25) column chromatography.	111

× .

.

xi

3.2	Inhibition assays using the Ovarian Monitor to assess PdG-antibody	
	concentration.	113
3.3	The initial checkerboard titrations of different PdG-antiserum	
	dilutions against PdG-HRP conjugate dilutions.	115
3.4	The effect of different pre-dilutions of the PdG monitor standards on	
	the PdG standard curve	117
3.5	PdG standard curve using the monitor PdG standards (10 μ l) at a	
	1/50 dilution.	120
3.6	The PdG standard curve using 1 μl of undiluted monitor PdG	
	standard in a total volume of 1.35 mls.	120
3.7	A range of volumes of undiluted PdG standards at a PdG-HRP	
	dilution of 1/10,000 and 1/20,000.	122
3.8	Effects of varying the volumes of PdG standards in a total volume of	
	1.35 mls.	123
3.9	The effects on the standard curve of using monitor PdG standards of	
	1 µl in a total volume of 1.8 mls.	125
3.10	The effects on the PdG standard curve of an antiserum dilution of	
	1/1,000.	125
3.11	The effects on the PdG standard curve of an increased PdG-HRP	
	concentration and an increased PdG antiserum concentration.	126
3.12	Normalised PdG standard curves (n=18) from nine different ELISA	
	microtitre plate, using S.D. error bars.	130
3.13	A pregnanediol dose response curve generated using a range of	
	concentrations and a control PdG standard curve to determine the	
	percentage of cross reacting of pregnanediol with the PdG	
	antibodies.	132
3.14	A testosterone dose response curve generated using a range of	
	concentrations and a control PdG standard curve used to determine	
	the percentage of cross reacting of testosterone with the PdG	
	antibodies.	133
3.15	A pre-diluted (1/50) PdG standard curve together with a urine	
	spiked PdG standard curve.	135

3.16(a)	A series of PdG standard curves containing diluted and undiluted	
	blank urine samples, compared with a PdG control standard curve	
	containing no blank urine sample.	136
3.16(b)	A PdG control standard curve containing no blank urine sample	
	and a PdG standard curve containing neat urine sample.	136
3.17	Menstrual cycle urines from subject 21R (cycle 6) from the WHO	
	study. Cycle days plotted against absolute PdG levels obtained	
	using the ELISA assay.	139
3.18	Menstrual cycle two from subject 23B of the WHO study. The	
	effect of 1 μ l of urine sample in a total volume of 1.35 mls, and a	
	PdG antiserum dilution of 1/2,500 on the PdG levels obtained	
	using the ELISA assay.	140
3.19	Twelve repeats of six different urine samples from the WHO study	
	used to monitor the performance of the PdG ELISA assay(s).	142
4.1	E1-3G levels for cycle days 1 to 16, and PdG levels for cycle days	
	14 to 20 recorded by a woman herself at home using the Ovarian	
	Monitor.	146
4.2	Menstrual cycle urine (21R-6) used to measure E1-3G levels using	
	the ELISA assay.	148
4.3	A correlation of the E1-3G levels for menstrual urine (21R-6)	
	obtained using the Ovarian Monitor and the ELISA assay.	148
4.4	The ELISA assay used to measure E1-3G levels in urine (21R-6)	
	using an increased urine sample volume of 20 µl.	150
4.5	E1-3G levels for menstrual cycle urines (21R-6) obtained using the	
	Ovarian Monitor in the laboratory with repeated measurements	
	recorded from cycle day 11 to cycle day 16.	151
4.6(a)	E1-3G levels obtained using ELISA assay (10 µl) superimposed on	
	the PdG levels obtained using the ELISA assay.	152

xiii

4.6(b)	E1-3G levels obtained using the ELISA assay (20 µl) superimposed	
	on the PdG levels obtaisned using the ELISA assay.	153
4.7	E1-3G levels obtained using the Ovarian Monitor (14X-6).	155
4.8	E1-3G levels obtained using the ELISA assay (14X-6).	155
4.9	Subject 20 K, menstrual cycle 1: A comparison of PdG levels	
	obtained using the ELISA assay with PdG levels obtained using	
	the RIA assay method.	157
4.10	Subject 2 F, menstrual cycle 2: A comparison of PdG levels	
	obtained using the ELISA assay with PdG levels obtained using	
	the RIA assay method.	159
4.11	Subject 23 B, menstrual cycle 2: A comparison of PdG levels	
	obtained using the ELISA assay with PdG levels obtained using	
	the RIA assay method.	160
4.12	Subject 9D, menstrual cycle 2: A comparison of PdG levels	
	obtained using the ELISA assay with PdG levels obtained using	
	the RIA assay method.	163
4.13	Subject 14 K, menstrual cycle 1: A comparison of PdG levels	
	obtained using the ELISA assay with PdG levels obtained using	
	the RIA assay method.	164
4.14	Subject 23 B, menstrual cycle 1: A comparison of PdG levels	
	obtained using the ELISA assay with PdG levels obtained using	
	the RIA assay method.	165
4.15	A plot of a correlation of the combined PdG levels from six	
	menstrual cycles obtained using the RIA assay with the PdG levels	
	obtained using the ELISA assay.	168
4.16	A longitudinal clinical study of daily E1-3G and PdG levels	
	obtained using the ELISA assays for May-June, 1996.	172

4.17	A longitudinal clinical study of daily E1-3G and PdG levels	
	obtained using the ELISA assays for June-July, 1996.	173
4.18	A longitudinal clinical study of daily E1-3G and PdG levels	
	obtained using the ELISA assays for July-August, 1996.	174
4.19	A longitudinal clinical study of daily E1-3G and PdG levels	
	obtained using the ELISA assays for September-October, 1996.	175
4.20	A longitudinal clinical study of daily E1-3G and PdG levels	
	obtained using the ELISA assays for October-November, 1996.	176
4.21	A longitudinal clinical study of daily E1-3G and PdG levels	
	obtained using the ELISA assays for November-December, 1996.	177

.

xv

List of Tables

ġ.

Table 1.1	The Oestrogens and their Major Urinary Metabolites.	15
Table 2.1	E1-3G-Antibody in Grams/Microwell (100 μ l) for each Dilution.	70
Table 2.2	Components of the E1-3G ELISA (Grams/Microwell).	77
Table 2.3	The Means (A ₄₉₀) and Standard Deviation (S.D.) of both the E1-3G Standard (3.4 nmoles/24 h) and the Zero Standard used to Calculate the Sensitivity of the E1-3G Standard Curves.	79
Table 2.4	Characteristics of the E1-3G Standard Curves Using ELISA.	80
Table 2.5	Percentage Cross-Reaction of Various Steroids in the Antibody Coated ELISA for Oestrone-3 α-Glucuronide.	83
Table 2.6	Binding Kinetics for Native and Conjugated Progesterone.	93
Table 3.1	Data Showing the Specific Activities (Δ AU min ⁻¹ mg ⁻¹) and RZ Values of HRP Before and After Conjugation to PdG and G-25 Chromatography and Concentrating Procedures.	112
Table 3.2	PdG-Antibody (ng/well) and PdG-HRP Conjugate (ng/well) at Dilutions Used in the PdG ELISAs	118
Table 3.3	Ovarian Monitor PdG Standards (in pg/well) Used in the Construction of Three PdG Standard Curves Using ELISA.	119

Page

Table 3.4	The Mean (n=18) Absorbance Values (A_{490}) and Standard Deviations (S.D.) of both the PdG Standards (0.1 µmoles/24 h)	
	and Zero Standards used to Calculate the Inter-Assay Sensitivity of the PdG Standard Curve.	128
Table 3.5	The Mean (n=18) Absorbance Values A_{490} and Standard Deviations (S.D.) of both the PdG Standards (0.5 µmoles/24 h) and the Zero Standards used to Calculate the Inter-Assay Sensitivity of the PdG Standard Curve.	129
Table 3.6	Characteristics of the PdG Standard Curves Using ELISA.	129
Table 3.7	Percentage Cross-Reaction of Various Steroids in the Antibody Coated ELISA for Pregnanediol-3 α -Glucuronide.	134
Table 3.8	The Means (n=12), Standard Deviations (S.D.) and Coefficent of Variation (C.V.) from Six Different WHO Urine Samples used to Monitor the Performance of the PdG Assay(s).	143
Table 4.1	Comparison of PdG ELISA with (WHO) RIA PdG Values; Relative to the Oestrogen Peak Day as Zero.	161
Table 4.2	Comparison of PdG ELISA with (WHO) RIA PdG values; Relative to the Oestrogen Peak Day as Zero.	166
Table 4.3	A Summary of the PdG levels measured on the day the Threshold Value (6.3 µmoles/24 h) was attained (or exceeded); Relative to the Oestrogen Peak Day as Zero, using the ELISA assay and RIA Data.	169

xvii

Abbreviations

Aromatase	Oestrogen synthetase
A ₂₇₈	Absorbance at 278 nm
A ₂₈₀	Absorbance at 280 nm
A ₄₀₄	Absorbance at 404 nm
A ₄₉₀	Absorbance at 490 nm
B/B ₀	Absorbance value of the steroid standard divided by the
	absorbance value of the zero standard
CAb	Capture antibody
CV	Coefficient of Variance
DCC	Dicyclohexylcarbodiimide
DMF	Dimethylformamide
`E'	Mean absorbance reading for the steroid glucuronide standard
`E ₀ '	Mean absorbance reading of the zero standard
ED ₅₀	At the midpoint of a normalised standard curve
ED ₂₀	At a point 20% from the bottom of a normalised standard curve
EIA	Enzyme Immunoassay
ELISA	Enyme Linked Immunosorbent Assay
E1-3G	Oestrone-3 α-Glucuronide
E1-3G-HRP	Oestrone-3 α-Glucuronide-Horseradish Peroxidase Conjugate
Fab	Antigen-binding fragment of antibody
Fc	Constant fragment of antibody
FSH	Follicle Stimulating Hormone
HEWL	Hen Egg White Lysozyme
HRP	Horseradish Peroxidase
IgG	Immunoglobulin Class G
LH	Luteinising Hormone
NC	Nitrocellulose paper
NHS	N-hydroxysuccinimide
NSB	Non specific binding
OPD	O-phenylenediamine
PBS	Phosphate buffered saline

Pd	Pregnanediol
PdG	Pregnanediol-3 α-Glucuronide
PdG-HRP	$Pregnanediol 3 \alpha Glucuronide Horseradish \ Peroxidase \ Conjugate$
RZ	reinheitzahl
RIA	Radioimmunoassay
SD	Standard Deviation
SEM	Standard Error of the Mean
SPI	Solid Phase Immunoassay
Tween(20)	Polyoxyethylene (20)-sorbitan monolaurate
ΔT	Change in Transmission
T ₀	Transmission at time zero
T ₂₀	Transmission time of 20 minutes
WHO	World Health Organisation

÷