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ABSTRACT 

Recent studies established that many legumes , when in fected 

with the appropriate Rhizobiwn spp. and arbuscular fungi, nodul ated 

better and exhibited greater dinitrogen fi xa tion than plants infected 

with only the rhizobia. 

A similar study, therefore, was carried out in a glasshou se 

using sainfoin (Onobrychis viciifoZia Scop.J, a legume that is rapidly 

gaining recognition as a potential forag e crop in New Zealand and 

other parts of the world. Pre -germinated seeds (cv. Fakir) were 

planted in sterilized soils and incubated with an effective Rhizobiwn 

spp. (strain NZP 5301), a mixture of endophytes (Gigasp.o:t.'a magaPita 

Becker & Hal 1, G'lomus fasciculata (Thax. sensu Gerd.) Gerdemann & Trappe 

and G'lomus tenuis (Greenall) Hall), or both eht rhi zob ·ia and endophytes. 

The experiment also included a control, without any inocu lation. 

Endophyte in fection, nodulation and dinitrogen fixation, total nitrogen 

and phosphorus concentrations, and plant growth and development were 

determined on eleven sequential samplings over about twenty v,eeks, up 

to the stage of green inflorescence. 

Arbuscular mycorrhiza formation did not occur with the first 

endophyte inocul ation, containing GigaspoY'a magaY'ita Becker & Hall, even 

after 93 days of growth. This is probab ly because the inoculum used 

consisted of a low quantity of viable spores and mycelia. The second 

inoculation, containing the three endophyte species, produced only a 

low degree of infection between day 115 and 137, possibly because the 

extensive root lignification and relatively higher root phosphorus 

concentration (0.50%) restricted fungal invasion and establishn~nt 

within the root cortex. Mycorrhiza formation did not increase 

phosphate uptake, improve nodul ati on and dinitrogen fi xati on, or increase 

p 1 ant grov,th. This is due probably to the al ready \ve 11-deve loped root 

systems that were efficiently exploiting the small soil volume within 

the bags. 

Rhizobia-inoculated plants produced more nodules, l~rger 

nodules and consequently, a greater nodule dry weight than the uninocu­

lated plants. The nodules produced in the inoculated plants were red 
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instead of green as in the uninoculated plants, and exhibited a greater 

dinitrogen fixation. As a result, these inoculated plants contained 

a higher concentration of shoot~ root and nodule nitrogen, and a 
greater dry weight accumulation in the shoots and nodules. The shoot 

and nodule phosphorus concentrations, however, were lower in the 

rhizobia-inoculated than in the uninoculated plants due to the greater 

amount of shoot and nodule tissues which caused a dilution ·effect. 

These rhizobia effects on nodulation and dinitrogen fixation, nitrogen 
and phosphorus concentrations, and plant growth and development became 

more prominent with time. 

The relatively higher nodule phosphorus concentration when 

compared with the shoot and root phosphorus concentrations suggests 
that phosphorus was presumably required in large quantities by the 

dinitrogen-fixing system. 
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PREFACE 

of life. 
Coexistence of organisms has long been recognised as an axism 

In 1952, Paul R. Bulkholder formally and objectively inter-
preted coexistence as different biological interactions. Based on his 
coaction theory, these interactions were classified into and named as 

' nine separate categories of which the most studied in agricultural 
ecology are competition and mutualism. 

In this thesis, two examples, of mutualism, involving a 

forage legume (Onobrychis viciifolia Scop.), a nitrogen-fixing bacterium 
(Rhizobium spp.J and three species of arbuscular fungi (Gigaspora 

magari ta Becker & Hall, Glomus fasciculatus (Thax. sensu Gerd.) 
Gerdemann & Trappe and Glomus tenuis (Greenall) Hall), are examined. 
The intention of this study was to investigate the real value of 
coexistence of these organisms from an agricultural standpoint and, 

therefore, emphasis is placed on the effects of the bacterium and 
fungi on the nutrition, and growth and development of sainfoin. While 

the bulk of chapters 4, 5, 6 and 7 is devoted to these topics, the 
relevant background information of the research is also included in the 
first three chapters. 

Various persons were directly and indirectly involved in the 
completion of this work. I am deeply indebted to Mr Angus G. Robertson 
for his close supervision and unceasing availability in offering advice, 
suggestions and practical assistance during this entire masterate prog­
ramme, and his many criticisms and recommendations during editing of 

the manuscript. I must also ~cknowledge his foremost contribution to 

me as a research student in helping me to develop the skill of more 

effective thinking in scientifi~ research. 
Dr Conway Ll. Powell, of the MAF Ruakura Soil and Plant 

Research Station in Hamilton, was most generous in supplying a substantial 

quantity of fungal inocula as my initial cultures. Throughout the study, 

he, being an outstanding world authority on mycorrhiza research, showed 

a deep interest in the work and provided many prompt suggestions which 

were invaluable. 

Sainfoin seeds (cv. Fakir) were kindly supplied by Mr Jim A. 

Fortune, of the Agronomy Department. I am also grateful for the 



permission to sample some sainfoin plants from his experimental plots, 
and his many suggestions. 
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The methodol ogy of acetyl ene reduction assay was kindly 
introduced and demonstrated by Dr Jim .A. Crush and Mr Paul Yarrell, of 

the DSIR Grass l ands Division 1 Palmerston North. Owing to certain 
unavailable glassware, the assaying procedure was s lightly modified, 

but the value of their contributions remains. I am thankful for the 
privil ege to use the Pye gas chromatograph and other facilities in the 

Botany Department as well as the technical assistance given by Dr David 
W. Fountain and his technician, Mr Chong Loong Kan. 

The colorimetric autoanalysis of both t ota l plant nitrogen 
and phosphorus was kindly conducted by Mr Russe ll W. Till man, of the 
Soil Science Department and , therefore, a considerab le amount of routine 
work was reduced, enabling me t o concentrate on other aspects of the 
study. Hi s instructions on the preparati on of the Kjeldahl digest 
reagent and Kje l dahl digestion are also fully apprec iated. 

I am exceedingly grateful to Mr Hugh Nielson, of the Horti­
culture and Plant Health Department , for the supp ly of some chemical 
reagents and classware, and hi s ass i stance i n compound-microscope 
photography . All the micrographs in this vol ume are hi s f ine work . 

Ap preciation i s expressed to Dr Murray J . Hill for the 
permi ss i on to use the wei gh ing faci li ties in the Seed Technology Centre 
and the assistance received f rom hi s technician, Mrs Karen Johnstone. 

I wi sh to th ank Dr Ian L. Gordon, of the Agronon~ Depa r tment 
and Mr Greg C. Arn old, of the Mathematics and Statistics Department, for 

advice in statistical methods . I am also exceedingly grateful to Dr 
Neil A. Macgregor for hi s general recommendations and the great interest 
he took in thi s research. To my typi st, Mrs Cecily Willbond, I wish 
to extend n~ si ncere appreciation fo r her efficient and excellent work . 

Very special appreciation must be made to my wife, Lih Ju, 
for her long-suffering~ fin ancial assistance and unsacrifi cial contri­

bution of her time and energy in hel ping me in the expe rimental work, 
while also fulfilling the role of a homemaker and breadwinner. 
Financial awards from Helen E. Akers (two years), John Alexander Hurley, 

William Hudson and the Christian Centre Palmerston North are also 
gratefully acknowledged. 

Finally, I wi sh to acknowl edge the inspiration from t he Holy 
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Spirit and God's gift of the ineffable awesome creation which I intim­

ately worked with for over five months. The opportunity is here for 
me to return the magnificent glory of His i ngeni'ous design whi eh aptly 

speaks of His omniscience. 
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CHAPTER 1 

INTRODUCTION 

Nitrogen is an essential element for plant growth and repro­

duction as it is required in the synthesis of proteins, enzymes, 

deoxyribonucleic acids and many intermediate metabolic compounds. It 

is, therefore, a key constituent of all plant cells. Dry matter of 

vascular plants contains about 15 OOO µg N g- 1DM (1.5% nitrogen), making 

it the most abundant soil element in plant tissue (Table 1.1). 

The supply of nitrogen in current and future agricultural 

systems is a major determinent of 

ever-expanding human population. 

agricultural plants were selected 

adequate food production to meet the 

During the green revolution, many 

and bred for responsiveness to ferti-

lizer supply, resulting in the necessity for intensive application of 

fertilizers particularly nitrogen (Cummings and Gleason, 1971; Engibous, 

1975; Jackson et a~ 1975; Cox and Atkins, 1979). Scrimshaw and 

Taylor (1980) have worked out that the primary fa ctor responsible for 

increases in crop production between 1961 and 1976 was the increasing use 

of fertilizers. Between the same period, the world 1 s annual consumption 

of nitrogen fertilizers rose sharply from 11 to 45 Gkg, a drama tic 309% 

increase (Fertilizers - Annual Review, 1968; FAO Fertilizer Yearbook , 

1980). In 1980, it reached a record of 57 Gkg year- 1 (FAO Fertilizer 

Yearbook, 1981). With this increasing t rend in nitrogen fertilizer usage, 

it is perhaps not an exaggeration to reaffirm the statement of Viets (1965) 

that more crops are deficient of nitrogen than of any other element. 

The primary supplement of nitrogen to crop plants is from indust­

rial nitrogen fertilizers. However, the existing method of industrial 

synthesis of nitrogen fertilizers requires a high input of expensive 

fossil energy. For instance, in the manufacture of ammonia, the pre­

cursor for various types of nitrogen fertilizers, a temperature of 400 to 

500°C and a pressure of 15 to 35 MPa must be created to drive the Haber­

Bosch process in a modern plant, with a production capacity of about 900 

Mkg day- 1 (Bridger et al, 1979). In this process alone, the natural 

gas feed and fuel cost contributes 25% of the total manufacturing cost 

(Finneran and Czuppon, 1979). With the addition of other fuel expend­

iture as in the conversion of ammonia into nitrogen fertilizers, in 

transport and in application, the final nitrogen fertilizer applied to 



TABLE L 1 
CONCENTRATION OF SIXTEEN ELEMENTS 

IN COMPLEX PLANTS (AFTER 
STOUT, 1961) 

2. 

Element Concentration (µg g- 1 OM) 

From the atmosphere and water, 
carbon 
oxygen 
hydrogen 

From the soil, 
nitrogen 
potassium 
calcium 
magnesium 
phosphorus 
sulphur 
chlorine 
iron 
manganese 
boron 
zinc 
copper 
molybdenum 

TABLE 1. 2 

450 OOO 
450 OOO 
60 OOO 

15 OOO 
10 OOO 

5 OOO 
2 OOO 
2 OOO 
1 OOO 

100 
100 

50 
20 
20 
6 
0.1 

EFFICIENCY AND CONTRIBUTION FROM VARIOUS 
DINITROGEN-FIXING SYSTEMS (AFTER 

BURNS AND HARDY, 1975, WITH 
AUTERATI ONS IN PARENTHESIS 

FROM PAUL, 1978) 

Rate of 
Dinitrogen-fi xing Land use fixation 

system (Mha) (kg N2ha- 1 

year- 1
) 

Legume-Rhizobium legume 250 140 ( 80) 
Legume-Rhizobium permanent 

grassland 3 OOO 15 ( 8) 
Blue-green algae rice 135 30 
Free-living and "loose" 
associations other crops 5 5 

Total 
contribution 
(Gkg N2year- 1

) 

35 (20) 

45 (24) 
4 

5 
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the field is an expensive item for many farme.rs·. 

In conjunction with th.is. h.i.gh cost, tracer studies reveal that 
the use of applied nitrogen fertilizers in the field by crop plants is 
inefficient. Depending on the type of crop, agricultural practices, 
fertilizer, climate and soils (Winteringham, 198Q), between 20 to 60% 
of the total applied nitrogen is absorbed by crop plants (Allison, 1965, 

1966; Bartholomew, 1971; Gutschick, 1980; Hauck, 1981). The work of 

Myers and Paul (1971) showed that wheat (Tri t ioum aestivum L.) grown in 
a sandy loam and a clay soil, recovered about 25% and 50% of the applied 
ammonium nitrate respectively in the shoots. In two other studies, a 
first year maize (Zea mays L.) crop utilized only about 22% of the 
labelled urea, this being from grain and straw (Arora et al, 1980), 

while a first year dwarf bean (Phaseolus vulgaris L.) crop removed about 
30% of the labelled ammonium sulphate (Cervellini et al, 1980). The 
unrecovered nitrogen is "lost" through immobilization, leaching, erosion, 
denitrification and volatilization of which leaching and erosion, if 

excessive, pose a serious threat to environmental pollution and public 
health (Mulder et al, 1977; Wild and Cameron, 1980 ). 

From the foregoing di scussion, it is apparent that the continual 
heavy reliance on nitrogen fertilizers in the future is becoming a ques­
tionable proposition. The emphasis of current nitrogen and crop research 
is, therefore, strongly orientated towards improv ing biological dinitrogen 
fixation (Evans, 1975 ; Hardy et al, 1975; Brill, 1980; Hardy, 1980a , b; 
Lambourg, 1980; Subba Roa, 1980). Several biological dinitrogen fixing 
systems are available for in corporation into agricultural production as 
shown in Table 1.2. The most important and efficient of which, in 
relative terms, is the legume-Rhizobiwn mutualistic association. The 
data in Table 1.2 indicate that this type of association fixes an average 
of between 80 to 88 kg N2 ha- 1year- 1 and, thus, contributes between 20 to 
44 Gkg N2 year- 1 to cultivated land under legumes and permanent grassland. 
However, a fixation as high as 171 kg N2 ha- 1year- 1 has been obtained in 
the developed New Zealand pastures in which the principal legume compo­
nent is white clover (Trifoliwn r epens L.) (Hoglund et al, 1979). 

Although the legume-Rhizobiwn association is the most efficient 
by comparison, it is widely recognised that its dinitrogen-fixing activ­
ity seldom attains the optimal rate. For example, the clovers in the . 
New Zealand pastures are capabl e of fixing a potential of 215 to 336 kg 



4. 

N2 ha- 1year- 1 (Sears et al,1965; Levy~ 1970). Improvement on the rate 

of dinitrogen fixation is, therefore, an imperative research endeavour 
in order to sustain the necessary agricultural production levels. 

The physical and biologica l factors that directly and 

indirectly influence the legume-Rhizobiwn relationship have been ident­
ified and comprehensively reviewed by various authors (Lie, 1974; 

Gibson, 1977; Munns, 1977; Pate, 1977; Parker et al, 1977; Dommergues, 
1978; Vincent, 1980; Grandha 11 , 1981). One of these factors is soil 
phosphorus, an essential element for the growth and nodulation of legumes 
(van Schreven, 1958; Andrew, 1977; Andrew and Jones, 1978). Many 

legumes, \-.Jhen infected with arbuscular fungi, show an enhanced phosphate 
absorption and, subsequently, an associated increase in growth, nodul­
ation and dinitrogen fi xation (Crush, 1974; Daft and El-Giahmi, 1974, 

1975,1976; Powell, 1976; Mosse et al, 1976; Mosse, 1977; Abbott and 
Robson, 1977; Smith and Daft, 1977; Carling et al, 1978; Azcon-G. de 

Aguilar et al, 1979; Smith et al, 1979). Similar studies on sainfoin 
(Onobrychis viciifolia Scop.) have yet to be carried out and since it is 
a legume which is gradually gaining world-wide recognition as a potential 
forage crop, the purpose of this study is to examine the endophyte­
phosphate interaction, and its effects on the nodulation and dinitrogen 
fixation in sainfoin. 




