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Abstract

Graphene has been heralded as the supermaterial of the future, boasting incredibly
high electron mobility, thermal conductivity, and physical strength — all contained within
the world’s first true 2D material, only a single atom thick. Graphene nanoribbons
(GNRs) broaden this potential further by demonstrating width-dependent band gaps due
to confinement effects. In addition, the ability to define the edge geometry and dimensions
of GNRs allows control over self-assembly of these novel carbon nanostructures. GNR
synthesis has been broadly explored in literature, demonstrating both relatively high
yields and atomic-scale precision. Rarely, however, are these two criteria achieved in the
same technique. Longitudinal unzipping of carbon nanotubes (CNTs) generates large
quantities of nanoribbon material at the expense of quality, while techniques such as
chemical vapor deposition (CVD) and bottom up synthesis achieve truly astounding
quality, but lack scalability.

Recently, the synthesis of highly ordered GNRs with tunable dimensions and
unique geometries has been demonstrated using mechanical fracturing of a block of
graphite via simple microtomy techniques. This method offers a top-down approach to
GNR synthesis providing highly ordered structure on a much larger scale than efforts to
date. In this work, this technique has been altered to use a dry-cut method, and the
structural and chemical properties of the material obtained therein have been extensively
characterised, demonstrating increased quality, structural order, and quantities obtainable.
Further, this work has demonstrated the functionalisation of these dry-cut materials both
chemically via simple organic chemistries, and non-covalently utilising filamentous

bacteriophage as a route towards biofunctionalisation.
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