

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ABUNDANCE AND BEHAVIOURAL ECOLOGY OF BOTTLENOSE DOLPHINS (*Tursiops truncatus*) IN THE MARLBOROUGH SOUNDS, NEW ZEALAND.

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Conservation Biology

at Massey University, Albany, New Zealand.

Monika Gayle Merriman

2007

ABSTRACT

In order to survive, animals require both food and protection from predators. These ecological factors are major determinants in habitat selection and social interactions. Determining the causes of habitat selection and examining the behavioural ecology of marine mammals is often a difficult task. In the ever-changing marine environment, factors such as shifts in prev availability, turbidity, sea surface temperature, and salinity result in a highly dynamic ecosystem that influences distribution. This research's primary focus was to establish baseline information on the behavioural ecology of bottlenose dolphins, Tursiops truncatus in and around the Marlborough Sounds, New Zealand. Boat based surveys, photo-identification, and group focal follows were used to assess spatial distribution, abundance, home range, and social interactions. Boat based surveys were conducted from 2003 to 2005. Photo-identification data collected from 1997 to 2005 were used in analysis. Uniquely marked individuals (n = 335) were sighted throughout the Marlborough Sounds and long-term site fidelity was observed among members in this large open population. Aggregations of between 3 to 172 individuals were observed with a median group size of 12. Group size was influenced by the presence of calves, with groups tending to be larger when calves were present. Larger groups were found to rest more than smaller groups and resting occurred less in the spring months. Association patterns revealed long- and short-term preferred associations between individuals throughout the Sounds. Distribution and movement patterns of dolphins showed they used all areas within the Marlborough Sounds. The population of bottlenose dolphins observed in the Marlborough Sounds were found to be semi-resident with 211.5 (C.I. =

195 - 232) individuals utilising the Sounds year round while other individuals were found to migrate in and out of the area on an annual basis. The Marlborough Sounds appear to be only a portion of a much larger home range for this population.

ACKNOWLEDGEMENTS

Firstly, a sincere thank you to Dr. Mark Orams and Professor Brian Springett for giving me the opportunity to start this project, helping with the funding of the research boat and for their generous support and advice.

Thank you to Associate Professor Dianne Brunton and Dr. Tim Markowitz for graciously overseeing the final stages of my thesis write up. Your help and support in my time of need were invaluable.

This research could not have been achieved without the financial support from Rock Steady Incorporated (RSI) and the Department of Conservation during the initial set up and field work, and thank you to the Sir Peter Blake Trust for their support during the analysis and write up stages of my thesis. Also, thank you to Port Marlborough, Marlborough Power Boat Centre, Stabi craft, Safety at Sea, Lowrance electronics and Yamaha for their kind support during the initial purchasing of safety equipment, all things boat related and for their help with the general maintenance and up keep of the boat. A special thanks to Pete and Takutai Beech for their support, knowledge, and loving spirits who welcomed me into the Marlborough Sounds so graciously. Thank you to the Marlborough Sounds Restorative Trust for making my life and project run smoother.

Thank you to my brother Ryan, without the backing of RSI none of this would have been possible. I am so grateful to Dr. Tim Markowitz and Karen Stockin, who kindly offered their direction, editing skills, support and friendship throughout the entire process of this master's.

Thank you both for being such wonderful role models. You are truly an inspiration to everyone around you.

Thank you to Wendy Schrader for all of the help with statistics during the final stages of analysis. You were a wonderful friend and mentor throughout this process. Thank you for always taking time to listen and helping me find my Buddha nature. You have changed my life forever. I am wiser, emotionally stable and overall a better person because of you.

Thank you to Drs. April Harlin, Tim Markowitz, Ingrid Visser and to Gabriela de Tezanos Pinto and Les and Zoey Battersby for use of their photos. The generosity you showed by allowing the use of your data greatly added to the photo-identification catalogue.

Thank you to Danny Bolten, Dan and Amy from Dolphin Watch, all the King Salmon and Mussel Farm workers and general members of the public, whose texts and phone calls were invaluable.

Thank you to all the volunteers who helped out over the three years of field observations and a special thank you to Hannah Russell, Monique Jansen van Rensburg, Gemma Cave and Haley Gullery, who's friendship and help through various aspects of this project were amazing and more than I could have asked for.

I am so grateful to have such a patient and understanding partner whose support has helped me throughout this entire process. Chris, thank you for putting up with me and my dramas. You are my home away from home. I could not have done this without you. I love you honey bunches and bunches.

Finally, to my loving and supportive family, my parents Earl and Nona Merriman and brother Ryan Merriman. Thank you from the depths of my heart. Without your support the journey would have been far more difficult. Thank you for helping me to accomplish all my goals and dreams. I love you all so much and even though you are far away you are always in my thoughts and heart. Thank you for letting me be such a free spirit

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iv
Table of Contents	vii
List of Tables	xiv
List of Figures	xvi
List of Plates	xix

Chapter I: Introduction	1
1.1 General Introduction	1
Threats to the Marine Environment	1
Conservation Management Issues	2
Habitat Use and Behavioural Ecology of Marine Vertebrates	2
Habitat Use and Behavioural Ecology of Marine Mammals	4
Ecological Influences on Behaviour and Association Patterns	5
The Bottlenose Dolphin	6
Justification and Rationale	9
1.2 Thesis Aims and Objectives	10
1.3 Chapter Overview	11

and behaviour patterns within the Marlborough Sounds, <u>New Zealand.</u>	13
2.1 Introduction	13
Influences on Distribution, Habitat Use and Behaviour of Marine Vertebrates	13
Conservation Management in the Marine Environment	14
Habitat Variation Among Populations of Bottlenose Dolphins	14
Distribution and Habitat Use of Bottlenose Dolphins	15
Group Size	16
2.2 Methods	18
Study Area	18
Data Collection	19
Data Analysis	22
Distribution and Habitat Use	22
Group Size and Composition	22
Activity Budgets	23
2.3 Results	24
Survey Effort	24
Distribution	25
Habitat Use	26
Group Size and Composition	28
Calf Presence	30
Activity Budgets	32
Area	33

Chapter II (continued)

Season	34
Group Size	35
2.4 Discussion	36
Distribution	36
Habitat Use	37
Population	37
Groups	39
Activity Budgets	42
2.5 Summary	43

Chapter III: Bottlenose dolphin abundance, site fidelity and movement patterns in the Marlborough Sounds, New Zealand. 45 3.1 Introduction 45 Abundance, Site fidelity and Movement Patterns in Nature 45 Population Monitoring in the Marine Environment 46 Bottlenose Dolphins 47 3.2 Methods 49 Study Area 49 Data Collection 49 Photo-identification 50

Chapter III (continued)

Data Analysis	51
Site Fidelity	52
Movement Patterns	55
3.3 Results	55
Survey Effort	55
Abundance Estimates	55
Mark Rate	57
Site Fidelity	58
Lagged Identification Rates	60
Movement Patterns	63
3.4 Discussion	64
Population Estimates and Site Fidelity	64
Movement Patterns	66
3.5 Summary	68

Chapter IV: Social structure of bottlenose dolphins within the Marlborough Sounds, New Zealand.	70
4.1 Introduction	70
Social Structure	70
Cetaceans	72
Bottlenose dolphins	72
4.2 Methods	74

Chapter IV (continued)

Data Collection	74
Data Analysis	75
Social Structure	76
Association Indices	76
Social Structure (Population Level)	77
Association Plots	77
Preferred/Avoided Associations	77
Test for Variation in Gregariousness	78
Temporal Analysis	79
Standardised Lagged Association Rates	79
Social Structure (Community and Dyad Level)	80
Group/ Individual Association Plots	80
Hierarchical Clusters (Community Level)	80
Sociograms (Dyad Level)	80
4.3 Results	82
Social Structure	82
Association Plots	82
Population	82
Groups	83
Preferred/Avoided Tests	85
Variation in Gregariousness	

Chapter IV (continued)

Longevity of Associations	86
Population	86
Groups	87
Hierarchical Cluster Analysis	90
Sociograms	93
4.4 Discussion	94
Social Structure	94
Coefficients of Association	94
Preferred/Avoided Associations	95
Variation in Gregariousness	96
Standardised Lagged Association Rates	98
Hierarchical cluster analysis	99
Sociograms	100
4.5 Summary	100

Chapter V: Conclusions and Recommendations	103
5.1 Introduction	103
Summary of Findings	104
Similarities and differences between Populations of T. truncatus in New Zealand	106
Comparisons between Populations of T. truncatus Worldwide	107
Abundance Estimates and Residency Patterns	107

Chapter V (continued)

Group Size and Behaviour	108
Association Patterns	109
How it Relates to Possible Management Issues	110
Directions for Future Work	111

References	113
Appendix A	129
Appendix B	130
Appendix C	132
Appendix D	133
Appendix E	141
Appendix F	145
Appendix G	151

LIST OF TABLES

Table 1.1. Summary of bottlenose dolphin studies discussed in this thesis.	8
Table 2.1. Bottlenose dolphin behavioural states used during this study.	21
Table 2.2. Age classes followed by definitions from Mann and Smuts (1999) and Mann <i>et al.</i> (2000).	22
Table 2.3. Number of surveys conducted, number of sightings recorded and hours of effort for each year from 2003-2005.	24
Table 2.4. Number of sightings and survey effort for each of the three areas within the Marlborough Sounds, from 2003-2005.	24
Table 2.5. Number of sightings and survey effort based on Austral seasons.	25
Table 2.6. Number of individuals observed in each area of the Marlborough Sounds.	25
Table 2.7. Mean number of calves within various group size classes.	30
Table 2.8. Environmental factors influencing group size, position, season and area.	31
Table 3.1. Models used to estimate abundance, followed by model definitions from SOCPROG 2.3.	52
Table 3.2. Models fitted to lagged identification rates.	54
Table 3.3. SOCPROG model results for 1992-2005 data.	57
Table 3.4. SOCPROG model results for 2003-2005 data.	57
Table 3.5. Mark rate data from 2005.	58
Table 3.6. Models fit to lagged identification rates for bottlenose dolphins found within the Marlborough Sounds.	61
Table 3.7. Probabilities of individuals moving between Queen Charlotte Sound, Pelorus Sound, Admiralty Bay and external areas within 1 day.	64

Table 4.1. Mathematical models that can be fitted to standardised	
lagged association rates in SOCPROG 2.3 with their definitions.	79
Table 4.2. Associations examined using SOCPROG 2.3 followed	
by the test method used, dataset selected, association index used	
(location of results), sampling period tested, group association	
defined and the cut off point for individuals used in this analysis.	81
Table 4.3. Results for permutation tests for "permute groups within	
samples" of individuals resignted four or more times in the	
Marlborough Sounds from 1997 to 2005.	85
Table 4.4. Results for permutation tests for "permute associations	
within samples" of individuals resignted four or more times in the	
Marlborough Sounds from 1997 to 2005.	85
Table 4.5. Standard deviation of typical group size for "permute	
groups within samples" for 148 individuals resignted 4 or more times.	86

LIST OF FIGURES

	Page
Figure 2.1. The Marlborough Sounds. Northern most area of the South Island, New Zealand.	19
Figure 2.2. Sightings of bottlenose dolphins in the Marlborough Sounds during 2003-2005.	26
Figure 2.3. Bottlenose dolphin sightings in the Marlborough Sounds from 2003 to 2005 displayed by season.	27
Figure 2.4. Sightings of bottlenose dolphin groups in the Marlborough Sounds from 2003 to 2005 by group size.	28
Figure 2.5. Estimated group sizes based on minimum photo-identification and field counts for 2003-2005.	29
Figure 2.6. Group size and composition for groups (n=45) encountered from 2003-2005 in the Marlborough Sounds by season.	29
Figure 2.7. Bottlenose dolphin daily activity budgets for the Marlborough Sounds region as a whole.	32
Figure 2.8. Bottlenose dolphin daily activity budgets by area.	33
Figure 2.9. Bottlenose dolphin daily activity budgets by season.	34
Figure 2.10. Bottlenose dolphin daily activity budgets by group size.	35
Figure 3.1. Discovery curve showing number of marked individuals identified over time.	56
Figure 3.2. Number of uniquely marked individuals versus the number of years photographed.	59
Figure 3.3. Observed versus expected Poisson distribution of the number of months individuals were identified.	60
Figure 3.4. Lagged identification rates for all individuals resignted 4 or more times in the Marlborough Sounds from 1997 to 2005 with standard error bars shown.	62
Figure 3.5. Lagged identification rates for all individuals resited 4 or more times in the Marlborough Sounds with the best-fit model (Emigration + reimmigration) shown.	62

Figure 3.6. Lagged identification rate for all individuals resited 4 or more times in the Marlborough Sounds with best-fit models (Migration-full interchange and Fully Mixed) shown.	63
Figure 4.1. a.) Non-diagonal association plot, b.) Maximum coefficient of association plot, both based on a weekly sampling period, (half weight index) for all individuals photographed four or more times in the Marlborough Sounds from 1997-2005.	82
Figure 4.2. a.) Non-diagonal association plot, b.) Maximum coefficient of association plot, both based on a weekly sampling period, (half weight index) for all individuals photographed four or more times occurring in small groups (less than 25) in the Marlborough Sounds from 1997-2005.	83
Figure 4.3. a.) Non-diagonal association plot, b.) Maximum coefficient of association plot, both based on a weekly sampling period, (half weight index)) for all individuals photographed four or more times occurring in medium groups (26-60) in the Marlborough Sounds from 1997-2005.	84
Figure 4.4. a.) Non-diagonal association plot, b.) Maximum coefficient of association plot, both based on a weekly sampling period, (half weight index) for all individuals photographed four or more times occurring in large groups (greater than 61) in the Marlborough Sounds from 1997-2005.	84
Figure 4.5. Lagged association rates of bottlenose dolphins observed four or more times from 1997- 2005 indicate the probability that dolphins photographed together at time 0 will be photographed together again at time x.	87
Figure 4.6. Lagged association rates of bottlenose dolphins observed four or more times in small groups from 1997- 2005.	88
Figure 4.7. Lagged association rates of bottlenose dolphins observed four or more times occurring in medium groups from 1997- 2005.	89
Figure 4.8. Lagged association rates of bottlenose dolphins observed four or more times occurring in large groups from 1997- 2005.	90
Figure 4.9. Association index displayed in cluster form, based on half-weight indices for all individuals (n=148) photographed four or more times from 1997-2005.	91

Figure 4.10. Association index displayed in cluster form, based on half-weight indices for all individuals (n=104) photographed four	
or more times occurring in small groups (less than 25) from 1997-2005.	91
Figure 4.11. Association index displayed in cluster form, based on	
half-weight indices for all individuals (n=122) photographed four	
or more times occurring in medium groups (26-60) from 1997-2005.	92
Figure 4.12. Association index displayed in cluster form, based on	
half-weight indices for all individuals (n=130) photographed four	
or more times occurring in large groups (greater than 61) from 1997-2005.	92
Figure 4.13. Sociogram of all individuals observed four or more times	
from 1997-2005.	93
Figure 4.14. Sociogram of all individuals observed four or more times	
occurring in various sized groups from 1997 to 2005.	94

LIST OF PLATES

Plate 2.1. A juvenile bottlenose dolphin leaping.	13
Plate 3.1. A mother and calf surfacing together.	45
Plate 3.2. Aurbie QC I44 11/03/1995	58
Plate 3.3. Aurbie QC I44 01/04/2005	58
Plate 4.1. Juvenile bottlenose dolphins colliding in mid-air, a display of social interaction.	70
Plate 5.1. An inquisitive calf, the future of the Marlborough Sounds.	103