'iew metadata<u>, c</u>itation and similar pape $_{brrso}$ $_{ua} \overline{\mathfrak{g}}$

n r o v i d o d

Copyright is owned by the Author of this thesis. Permission is given for a copy to be downloaded by an individual for research and private study only. This thesis may not be reproduced elsewhere without the permission of the Author.

Exploring the relationship between dietary patterns, eating behaviour and fat taste detection thresholds

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Science

In

Nutrition and Dietetics

at Massey University, Albany

New Zealand

Lisa Henderson

2016

Abstract

Background: Dietary pattern analysis provides a unique opportunity to explore combinations of food intake in conjunction with factors known to affect dietary intake. Fat taste sensitivity is an emerging correlate of dietary intake and, when impaired, has a proposed role in the dysregulation of dietary intake and eating behaviours.

Aim: To investigate dietary patterns, eating behaviours and fat taste detection thresholds in a group of New Zealand European women aged 19-45 years and identify associations between these factors.

Methods: Fifty post-menarche, pre-menopausal New Zealand European (NZE) women, (18-40 years) completed a partially validated, semi-quantiative 220-item food frequency questionnaire and a validated Three-factor eating questionnaire. Height and weight were measured to calculate body mass index (BMI) (kg/m²) and a bioeletrical impedence analysis (BIA) was completed to measure body fat percentage (BF%). During sensory testing protocol participants were exposed to increasing concentrations of ultra-heat treatment (UHT) milk/oleic acid (OA) solutions using the three alternative forced choice method (3-AFC). A naïve OA detection threshold was determined at the point where the participant identified the OA solution correctly three times at the same concentration. Dietary patterns were determined using principal component factor analysis. Associations between dietary pattern scores, taste sensitivity, eating behaviour and baseline characteristics were investigated.

Results: Three dietary patterns were identified: 'unhealthy', 'healthy' and 'snacking'. Most women had low eating behaviour scores for cognitive restraint (90%) and disinhibition (74%). Hunger scores were comparatively higher, only 40% had low scores. Twenty-three participants (46%) were classified as hypersensitive and 54% were hyposensitive to OA taste. 'Unhealthy' pattern scores were inversely associated with cognitive restraint (r=.391, P=.005) and positively associated with age (r=.297, P=.036). 'Healthy' pattern scores were positively associated with cognitive restraint (r=.418, P=.003), OA taste detection thresholds (r=0.446, P=.001) and BMI (r=.325, P=.021). Women with low 'snacking' pattern scores were significantly older (31.7 years (24.7, 40.4)) than those with moderate scores (24.0 years (22.0, 28.1)) (P=.037). No relationship was found between OA taste detection thresholds and eating behaviour.

Conclusion: Participants in this study showed a significant link between habitual dietary intake and measures for eating behaviour and fat taste sensitivity. Both 'healthy' and 'unhealthy' dietary patterns were associated with one, or both, of these factors. An unexpected positive association between the 'healthy' dietary pattern and fat taste sensitivity indicates a need for further investigation to better understand this relationship. Findings from the current study support the use of dietary patterns to better represent habitual intake in future research investigating fat taste sensitivity or eating behaviour.

Key words: Habitual intake, dietary intake, fat taste sensitivity, cognitive restraint, disinhibition, hunger

Acknowledgements

I would like to take the opportunity to acknowledge all those who have been involved this thesis project, and to thank a number of people for their contribution in particular.

Firstly, I would like to thank all of those women who participated in the Dessert taste study, your participation has made this project possible.

To my supervisors, Bernhard Breier and Kathryn Beck, thank you for your support, knowledge, ideas, dedication and extensive patience over the past two years. Additionally, thank you to Massey University Research Fund for providing funding support to the Dessert taste study.

Thank you to Sophie Kindleysides, not only for coordinating and running the Dessert taste study, but also for your invaluable knowledge, support and encouragement.

To Vicki Williams and Samantha Ansell, thank you for the advice, encouragement and frequent pep talks. I feel so fortunate to have you both as colleagues, and friends. Also to Laura Taylor, thank you for your wise words of advice when they were most needed. To my family and friends, thank you for sticking by me, for your endless patience, encouragement and support. Finally, I would like to say thank you to my parents, I would not have been able to do this without you.

Table of Contents

Abstract	I
Acknowledgements	III
Table of Contents	IV
List of TablesV	'III
List of Figures	.Х
Abbreviation List	ΧI
Chapter 1 – Introduction	.1
1.1 Background and study justification	. 1
1.1.2 Defining dietary patterns	. 1
1.1.2 Linking eating behaviour and dietary intake	.3
1.1.3 The role of fat taste sensitivity	.3
1.2 Aims and Objectives	.5
1.2.1 Specific objectives	.5
1.2.2 Hypothesis	.5
1.3 Structure of the thesis	.5
1.4 Researcher's Contribution to the study	.6
Chapter 2 – Literature Review	.7
2.1 Determinants of dietary intake	. 8
2.2 Dietary patterns in research	10
2.2.1 Establishing dietary patterns1	10
2.2.2 Assessing individual dietary intake for dietary patterns	13
2.2.3 Dietary patterns in the New Zealand population	17
2.2.4 Dietary patterns and metabolic and health outcomes	22
2.3 The role of eating behaviour2	23
2.3.1 Assessing eating behaviour2	23
2.3.2 Eating behaviour and dietary intake2	24

2.3.3 The sensory component of eating behaviour	28
2.4 Developments in the physiology of taste	29
2.4.1 Gustatory Anatomy	29
2.4.2 Primary tastes and taste criteria	30
2.4.3 Defining taste thresholds	31
2.4.4 Fat as a primary taste	32
2.5 Fat taste sensitivity, dietary intake, eating behaviour and body composition .	35
2.6 Summary	41
Chapter 3 - Method	42
3.1 Study design	42
3.2 Ethical approval	42
3.3 Study Population	42
3.3.1 Participants	42
3.3.2 Recruitment	43
3.3.3 Screening	43
3.4 Procedures	43
3.4.1 Data collection	43
3.5 Dietary and eating behaviour questionnaires	44
3.5.1 Food frequency questionnaire	44
3.5.2 Data analysis of FFQ	46
3.5.3 Eating Behaviour questionnaire	48
3.5.4 Data analysis of TFEQ	49
3.6 Sensory methodology	49
3.6.1 Use of oleic acid in testing fat detection thresholds	51
3.6.2 Three alternative forced choice (3-AFC) method	51
3.6.3 Establishing fat detection thresholds	51
3.7 Statistical analysis	52
3.7.1 Sample size	52

	3.7.2 Assessing dietary patterns	53
	3.7.3 Validation of oleic acid taste detection thresholds	53
Ch	hapter 4 – Results	55
	4.1 Participant characteristics	55
	4.2 Dietary Analysis	57
	4.2.1 Dietary Pattern analysis	57
	4.2.2 Baseline characteristics of three dietary patterns	59
	4.3 Eating behaviour determined by the Three-factor eating questionnaire	61
	4.3.1 Analysis of the Three-factor eating questionnaire	61
	4.3.2 Associations between eating behaviour, baseline characteristics and patterns	
	4.4 Establishing oleic acid (OA) taste detection thresholds	63
	4.4.1 Naïve OA taste detection thresholds and intra-class correlations (ICC)	63
	4.4.2 Oleic acid taste detection thresholds and baseline characteristics	65
	4.5 Food groups, dietary patterns and OA taste detection thresholds	65
	4.5.1 Oleic acid taste detection thresholds and food groups	65
	4.5.2 Oleic acid taste detection thresholds and dietary patterns	67
	4.5.3 Description of oleic acid taste detection thresholds and eating behaviours	68
Ch	hapter 5 – Discussion	70
	5.1 Participant characteristics	70
	5.2 Dietary pattern analysis	71
	5.3 Cognitive restraint, disinhibition and hunger	74
	5.4 Hypersensitivity and hyposensitivity to fat taste	75
	5.5 Study strengths and limitations	77
	5.5.1 Study strengths	77
	5.5.2 Study limitations	78
	5.6 Recommendations for future research	81
	5.7 Conclusion	22

Refe	rences	83
aaA	endices	94
	Appendix A. Dessert taste study screening questionnaire	
	Appendix B. New Zealand Women's Food Frequency Questionnaire	113
	Appendix C. Three-factor eating questionnaire	150

List of Tables

Table 1.1 Researcher contributions to the Dessert taste study	6
Table 2.1 Strengths and limitations of methods used to assess dietary patterns	11
Table 2.2 Comparison of strengths and weaknesses of the five main dietary assessment	1.1
methods	14
Table 2.3 Summary of dietary patterns derived by factor analysis observed in New	
Zealand women	18
Table 2.4 Studies investigating eating behaviour and dietary intake	25
Table 2.5 Sensory threshold definitions	31
Table 2.6 Summary of studies investigating fat taste sensitivity, dietary intake and	20
metabolic outcomes	30
Table 3.1 Daily frequency equivalent response conversions	.46
Table 3.2 Twenty-nine food groups used in principal component factor analysis	47
Table 3.3 Reference ranges for scoring the Three-factor eating questionnaire	49
Table 3.4 Ascending concentrations of oleic acid (OA) used to measure OA taste	
detection thresholds	50
Table 4.1 Age, height and body composition characteristics of study participants	56
Table 4.2 Factor analysis matrix for three dietary patterns identified	_58
Table 4.3 Inter-item reliability of three dietary patterns	59
Table 4.4 Comparison of age and body composition between low, medium and high	
adherence to three dietary patterns	60
Table 4.5 Correlation between three dietary patterns and age and body composition	61
Table 4.6 Descriptive characteristics of the Three-factor eating behaviour questionnaire	62
Table 4.7 Correlations between eating behaviours and age, body composition and	
dietary patterns	_63

Table 4.8 Median naïve oleic acid taste detection thresholds for hyposensitive and	
hypersensitive groups	65
Table 4.9 Comparison of age and body composition for participants hypersensitive	
(≤3.8 mM) and hyposensitive (>3.8 mM) to oleic acid taste	65
Table 4.10 Comparison of food group daily frequency equivalents for participants	
hypersensitive and hyposensitive to oleic acid	66
Table 4.11 Comparison of dietary pattern factor loadings for hypersensitive and	
hyposensitive participants	67
Table 4.12 Comparison of hyposensitive and hypersensitive oleic acid detection thresholds	
to eating behaviours	69

List of Figures

Figure 2.1 Theory of planned behaviour model for factors influencing dietary intake	8
Figure 3.1 Summary of the Dessert taste study sensory testing sessions	_44
Figure 3.2 Example questions used to demonstrate procedure for completing the New	
Zealand Women's Food Frequency questionnaire	45
Figure 4.1 Distribution of naïve oleic acid taste detection thresholds	64
Figure 4.2 Correlation between 'Healthy' dietary pattern factor scores and naïve oleic acid	
detection thresholds (mM)	_68

Abbreviation List

3-AFC Three Alternative Forced Choice

5-HT 5-hydroxytryptamine

AMDR Acceptable Macronutrient Distribution Range

AMPM Automated Multiple Pass Method

ATP Adenosine Triphosphate

BF% Body Fat Percentage

BIA Bioelectrical Impedance Analysis

BMI Body Mass Index

CVD Cardiovascular Disease

DASH Dietary Approaches to Stop Hypertension

DEBQ Dutch Eating Behaviour Questionnaire

DFE Daily Frequency Equivalent

EDTA Ethylenediaminetetraacetic acid

EXPLORE Examining The Predictors Linking Obesity Related Elements

FFA Free Fatty Acid

FFQ Food Frequency Questionnaire

GPCR G-Protein-Coupled Receptor

GPR120 G-Protein Receptor 120

ICC Intra-class Correlation

LCFA Long Chain Fatty Acid

MOH Ministry of Health

NZE New Zealand European

NZW-FFQ New Zealand Women's Food Frequency Questionnaire

OA Oleic acid

TEI Total Energy Intake

TFEQ Three-factor Eating Questionnaire

TRC Taste Receptor Cell

UHT Ultra Heat Treatment

WHO World Health Organisation