Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

An investigation into the link between vitamin D status, erectile dysfunction and cardiovascular risk factors in ageing men in New Zealand

A thesis presented in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

in

Nutritional Science

at Massey University, Palmerston North, New Zealand

Merrin Louise Quilter

2016

ii

ABSTRACT

Background

Cardiovascular disease (CVD) is the leading cause of death worldwide, particularly amongst ageing males. Prevention and/or early identification and effective intervention are essential in the fight against CVD. Erectile dysfunction (ED) is a prevalent and multi-factorial condition that is now accepted to be an early marker of subclinical CVD: the common denominator is endothelial dysfunction. Both the enzymatic capability for bioactivation of vitamin D and the vitamin D receptor (VDR) are expressed in endothelial cells and vitamin D may play a role in endothelial function. Vitamin D deficiency (serum 25-hydroxyvitamin D (25(OH)D) concentrations <50 nmol/L) is a worldwide pandemic and serum 25(OH)D levels <75 nmol/L may result in metabolic and vascular deterioration leading to endothelial dysfunction, ED and CVD. Assessment of erectile function can be used to identify otherwise asymptomatic men at high risk of developing clinical CVD, at a time when effective intervention may prevent, delay or reverse its progression. Vitamin D status may be associated with ED and CVD risk and could help improve erectile function and vascular health.

Objectives

The aim of this research was to investigate the postulated link between vitamin D status, ED, and CVD risk factors. The objectives were (1) to assess the prevalence of ED (using the 5-item International Index of Erectile Function (IIEF-5)) and its associated sociodemographic, lifestyle, and medical correlates in New Zealand (NZ) men aged 40-70 years; (2) to investigate the relationship between vitamin D status (serum 25(OH)D concentration), ED and other CVD risk factors in men aged 40-70 years living in the Manawatu region of NZ; and (3) to examine the impact of common VDR gene (*VDR*) polymorphisms on this relationship.

Method

Two thousand men aged 40-70 years were randomly selected from the NZ Electoral Roll and sent an anonymous postal survey designed to assess the prevalence of ED and its sociodemographic, lifestyle, and medical risk factors. Six hundred men aged 40-70 years living in the Manawatu region were randomly selected from the NZ Electoral Roll and invited to participate in an observational study designed to provide a comprehensive health profile of self-reported healthy men and investigate the relationship between vitamin D status, ED, and a range of CVD risk factors. Eligible participants (n=100) completed a comprehensive health assessment including a medical history, anthropometric and cardiovascular assessment, fasting blood sample, computer-based questionnaire, a submaximal fitness test and a handgrip

iii

strength test. Blood samples were assessed for four common *VDR* polymorphisms (rs11568820 (*Cdx*2), rs10735810 (*Fok*I), rs1544410 (*Bsm*I) and rs731236 (*Taq*I)) using polymerase chain reaction-high resolution amplicon melt (PCR-HRM) analysis.

<u>Results</u>

The survey showed 38.4% of respondents presented with ED (IIEF-5 ≤21). Older age, non-European ethnicity and current smoking were significant independent predictors of an increased risk of ED, while a high household income and regular vigorous physical activity (PA) were deemed protective. The observational study showed 30 men presented with ED and a further 37 men had <75 nmol/L 25(OH)D. There was a weak positive correlation between IIEF-5 scores and 25(OH)D levels (r_s =0.238, p=0.017). Men with <75 nmol/L had lower IIEF-5 scores compared to men with \geq 75 nmol/L 25(OH)D (22(7) vs. 24(3), p=0.001). Men with ED had lower 25(OH)D levels compared to men without ED (74.5(34) vs. 84.5(24), p=0.062). Every 1 nmol/L of 25(OH)D predicted a 2% decrease in the age-adjusted risk of ED (age-adjusted OR=0.98 [0.96-1.00], p=0.046). The PCR-HRM analysis showed that the Cdx2, FokI and BsmI polymorphisms were all significantly associated with an adverse cardiovascular risk profile. The Cdx2 G allele was associated with lower IIEF-5 scores compared to the A allele (23(4) vs. 24(2), p=0.008) and the GA and GG genotypes were predictors of an increased age-adjusted risk of ED (age-adjusted OR=18.78 [1.98-178.60], p=0.011 and 8.53 [1.00-72.73], p=0.050 respectively). However, Cdx2 was not found to modify the age-adjusted association between 25(OH)D levels and ED (multi-adjusted OR=0.97 [0.95-1.00], p=0.032).

Conclusions

These results suggest that over a third of NZ men aged 40-70 years suffer from ED and it is associated with sociodemographic, lifestyle and medical factors similar to CVD. Low serum 25(OH)D is associated with the presence and severity of ED in a self-reported healthy population. Common *VDR* polymorphisms are also associated with ED; however, they do not modify the association between serum 25(OH)D and ED. A randomised placebo-controlled human intervention trial is warranted to investigate whether improving vitamin D status in men with vitamin D deficiency and ED ameliorates symptoms and reduces the risk of CVD.

ACKNOWLEDGEMENTS

This research could not have been completed without the support of a number of people. Firstly, I would like to thank my supervisors, Professor Jane Coad, Dr Lynette Hodges and Dr Pamela von Hurst, all of whom have been valuable role models and provided important guidance and practical assistance at various stages throughout the research process. I am truly grateful for the time and advice they have provided.

I would also like to thank the academic, technical and administrative staff of the School of Food and Nutrition and the Institute of Fundamental Sciences (IFS) at Massey University for their support and encouragement. In particular, Mrs Chris Booth and Mrs Anne Broomfield for their technical assistance in the Human Nutrition Research Unit of IFNHH; Dr Kathryn Stowell for her technical assistance and encouragement in the Genomic Analysis Laboratory of IFS; Professor Roger Lentle, Dr Jasmine Thomson and Ms Ying Jin for their help with phlebotomy; and Dr Janet Weber for her time and advice regarding survey design and implementation.

Other members of staff outside the department also deserve my thanks: Dr John Waldon and Dr Nick Roskruge who provided advice regarding the cultural implications of this research for Maori; Dr Dean Whitehead who helped brainstorm feasibility issues including sensitivity and privacy considerations required when researching male sexual function; and Professors Patrick Morel and Barry Borman who offered their time in providing statistical guidance at various stages throughout this project.

There are many students and interns who provided practical support and/or encouragement throughout the PhD process. In particular I wish to thank Sarah Buchannan, Jasmine Buck, Emma Hintz, Marie-Eve Le Mercier, Hannah Morton, Ivana Sequeira and Robin Stewart.

I am truly grateful for the funding to complete this research, obtained from a combination of Professor Jane Coad's professional funds and School of Food and Nutrition Post Graduate Start-Up grants. Personal funding was awarded by the Massey University Vice Chancellors Doctoral Scholarship, and the Ngā Pae o te Māramatanga Doctoral Bridging Grant. I am also grateful for the financial support and assistance of the Nutriton Society of New Zealand to attend and present my research at national conferences. Further funding to attend the International Conference of Nutrition, Granada, Spain and to complete a short period of technical training at Kings College, London, UK in 2013 was generously granted by the Palmerston North Jaycee Trust Travelling Fellowship and a Massey University Travel Abroad Bursary. Thank you. Without such support, doing a PhD would not be feasible.

V

I am incredibly grateful for the support of the willing volunteers who offered their time and personal information for this study. Their openness, active support, encouragement, and ability to see the value of this research for both them as individuals and the general male community, and their willingness to share personal and often sensitive information with me was humbling.

Finally, I wish to thank my family and friends for their love and encouragement. Kristina LeGeyt for her help with graphic design. My parents, Graeme and Ruth Quilter, who have been emotionally and intellectually supportive of my ongoing education and assisted with childcare. My husband, Richard Guy, who has shown understanding, support and encouragement along this journey. My son, Alexander Guy, who has been my inspiration and motivation.

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vii
LIST OF FIGURES	xv
LIST OF TABLES	xvii
LIST OF ABBREVIATIONS	ххі

CHAPTER 1 GENERAL INTRODUCTION, AIMS AND OBJECTIVES	1
1.0 INTRODUCTION	3
2.0 STUDY AIMS AND OBJECTIVES	6
3.0 STUDY HYPOTHESES	6
4.0 IMPLICATIONS	7
5.0 STRUCTURE OF THESIS	8
6.0 REFERENCES	10

CHAPTER 2 LITERATURE REVIEW - ERECTILE DYSFUNCTION AND ITS USE AS AN

EARLY MARKER OF CARDIOVASCULAR DISEASE	17
1.0 INTRODUCTION	19
2.0 BACKGROUND	
2.1 Definition	19
2.2 Historical perspective	20
2.3 Sexual activity and ageing	20
2.4 Attitudes, beliefs and behaviours	21
2.5 Impact of erectile dysfunction	22
2.5.1 Social impact	22
2.5.2 Economic impact	22
2.6 Penile anatomy and histology	23
2.7 Erectile physiology	24
2.7.1 Central control	24
2.7.2 Peripheral control	26
2.8 Assessment and diagnosis	29
2.8.1 Clinical setting	30

2.8.2 Research setting	31
2.9 Treatment and prevention	33
2.9.1 Medical intervention	33
2.9.2 Lifestyle and dietary intervention	34
3.0 EPIDEMIOLOGY	35
3.1 Prevalence	35
3.1.1 New Zealand	46
3.1.2 Australia	46
3.1.3 United States	47
3.1.4 Multinational studies	48
3.2 Incidence	51
3.3 Comparability issues	53
3.3.1 Sample size, sampling frame and method, study population	53
3.3.2 Method of administration, assessment tool and definition	54
3.3.3 Data reporting	56
4.0 RISK FACTORS FOR ORGANIC ED	57
4.1 ED and sociodemographic factors	57
4.1.1 Ageing	57
4.1.2 Other sociodemographic factors	59
4.1.2.1 Race/ethnicity	59
4.1.2.2 Marital status/sexual activity	60
4.1.2.3 Socioeconomic factors	61
4.2 ED and medical factors	63
4.2.1 Metabolic disorders	63
4.2.1.1 Diabetes mellitus and prediabetes	63
4.2.1.2 Metabolic syndrome (MetS)	65
4.2.1.3 Insulin resistance and hyperinsulinaemia	67
4.2.1.4 Obesity	68
4.2.2 Cardiovascular disorders	73
4.2.2.1 Cardiovascular diseases	73
4.2.2.2 Hypertension	75
4.2.2.3 Dyslipidaemia	77
4.2.2.4 Atherosclerosis, arterial stiffness, endothelial	
dysfunction	79

4.2.2.5 CVD risk prediction algorithms	80
4.2.2.6 Imaging biomarkers	82
4.2.2.7 Blood biomarkers	85
4.2.3 Endocrine disorders	88
4.2.4 Depression, anxiety and stress	91
4.2.5 Other medical risk factors	93
4.3 ED and lifestyle factors	93
4.3.1 Smoking	94
4.3.2 Alcohol consumption	97
4.3.3 Physical activity	99
4.3.4 Obesity	103
4.3.5 Diet	103
4.3.5.1 Macronutrient intakes and food groups	104
4.3.5.2 Dietary patterns	105
4.3.5.3 Caffeine intake	106
5.0 ED AS A MARKER OF CVD	107
5.1 Temporal	108
5.2 Robust and consistent	108
5.3 Dose-response	109
5.4 Possible mechanisms	109
6.0 CONCLUSION	110
7.0 REFERENCES	112

CHAPTER 3 EF	RECTILE	DYSFUNC	rion –	A POPU	LATION-B	ASED CROSS-	
SECTIONAL S	SURVEY	OF IT	S PRE	VALENCE	AND	ASSOCIATED	
SOCIODEMOGRA	APHIC, LIF	ESTYLE AI		CAL FACTO	RS IN NEV	V ZEALAND	147
1.0 INTRODUCTIO	DN						149
2.0 METHODS							150
2.1 Sample	le size						150
2.2 Postal	l survey						150
2.2	.2.1 Sociod	emographi	c factors				151
2.7	.2.2 Sexual	activity and	d function				151
2.2	.2.3 Lifesty	e factors					151
2.2	.2.4 Medica	al factors					152

2.3 Data analyses	152
3.0 RESULTS	153
3.1 Response rate and respondent profile	153
3.2 Non-respondent and incomplete respondent profile	156
3.3 Sexual function	156
3.4 Sociodemographic factors	160
3.5 Lifestyle factors	160
3.6 Medical factors	161
3.7 Multivariate analysis	168
4.0 DISCUSSION	170
5.0 CONCLUSION	
6.0 REFERENCES	176

CHAPTER 4 LITERATURE REVIEW - VITAMIN D AND ITS LINK TO	
CARDIOVASCULAR DISEASE AND ERECTILE DYSFUNCTION	183
1.0 INTRODUCTION	185
2.0 BACKGROUND	186
2.1 Sunlight exposure and photo production	186
2.1.1 Environmental factors affecting photo production	188
2.1.2 Personal behaviours and factors affecting photo production	188
2.1.3 Assessment of sun exposure	189
2.1.4 Recommendations for sun exposure	189
2.2 Dietary vitamin D	190
2.2.1 Food sources	190
2.2.2 Supplementation	192
2.2.3 Assessment of dietary intake	192
2.2.4 Recommendations for dietary intake	192
2.3 Vitamin D metabolism and mechanism of action	193
2.4 Assessment of serum 25(OH)D concentration	196
2.4.1 Recommendations for serum 25(OH)D concentration	197
3.0 THE VITAMIN D DEFICIENCY PANDEMIC	199
3.1 Vitamin D status in New Zealand	199
4.0 VITAMIN D AND DETERMINANTS OF HEALTH	202
4.1 Skeletal health	202

4.2 Non-skeletal health	202
4.2.1 Vitamin D and cardiovascular health	203
4.2.1.1 Epidemiological evidence	203
4.2.1.2 Intervention evidence	208
4.2.1.3 Possible mechanisms	212
5.0 THE NOVEL LINK BETWEEN VITAMIN D AND ERECTILE DYSFUNCTION	215
6.0 CONCLUSION	217
7.0 REFERENCES	219

CHAPTER 5 VITAMIN D STATUS, ERECTILE FUNCTION AND CARDIOVASCULAR DISEASE RISK IN 100 APPARENTLY HEALTHY MEN AGED 40-70 YEARS IN THE

MANAWATU, NEW ZEALAND	239
1.0 INTRODUCTION	241
2.0 METHODS	242
2.1 Recruitment	242
2.2 Inclusion/exclusion criteria	243
2.3 Assessment	243
2.4 Main outcome measures	244
2.4.1 Vitamin D status	244
2.4.2 Erectile function	244
2.4.3 Cardiovascular disease risk factors	245
2.4.3.1 Sociodemographic and lifestyle	245
2.4.3.2 Anthropometric	246
2.4.3.3 Vascular health	246
2.4.3.4 Biomarkers and health conditions	247
2.5 Data analyses	248
3.0 RESULTS	249
3.1 Response rate and respondent profile	249
3.2 Characteristics of the sample population	251
3.2.1 Vitamin D status	251
3.2.2 Erectile function	252
3.2.3 Lifestyle factors	254
3.2.4 Anthropometric risk factors	254
3.2.5 Vascular health measurements	255

3.2.6 Biomarkers and health conditions	255
3.3 Association of vitamin D status with health parameters	261
3.4 Association of erectile function with health parameters	262
3.5 Relationship between vitamin D status and erectile function	263
3.6 Predictors of erectile dysfunction	266
4.0 DISCUSSION	269
5.0 CONCLUSION	272
6.0 REFERENCES	273

CHAPTER 6 LITERATURE REVIEW - COMMON POLYMORPHISMS IN THE	
VITAMIN D RECEPTOR GENE AND THEIR ASSOCIATION WITH VITAMIN D	
METABOLITES AND CARDIOVASCULAR DISEASE	283
1.0 INTRODUCTION	285
2.0 BACKGROUND	286
2.1 The vitamin D receptor gene (VDR)	286
2.2 Functional mechanisms of common VDR polymorphisms	287
2.3 Determinination of VDR polymorphisms	288
2.4 Comparability issues in current literature	290
3.0 THE PREVALENCE OF THE CDX-2, FOKI, BSMI AND TAQI POLYMORPHISMS	291
3.1 Prevalence of VDR polymorphisms in New Zealand	292
4.0 THE LINK TO VITAMIN D STATUS	295
5.0 THE LINK TO DISEASE PHENOTYPES	297
5.1 Cardiovascular disease outcomes	298
5.2 Cardiovascular disease clinical signs	299
5.3 Cardiovascular disease risk factors and markers	300
5.4 Effect on the assocation between vitamin D status and cardiovascular	
disease	303
6.0 CONCLUSIONS	305
7.0 REFERENCES	306

CHAPTER 7 FREQUENCY OF VITAMIN D RECEPTOR GENE POLYMORPHISMS	
(BSMI, FOKI, TAQI, CDX2) AND THEIR ASSOCIATION WITH CLASSICAL	
CARDIOVASCULAR RISK FACTORS, 25-HYDROXYVITAMIN D LEVELS AND	
ERECTILE DYSFUNCTION IN HEALTHY NEW ZEALAND MEN	317
1.0 INTRODUCTION	319
2.0 METHODS	321
2.1 Study population	321
2.2 VDR genotype analysis	321
2.3 Statistical analysis	322
3.0 RESULTS	323
3.1 Prevalence of the VDR polymorphisms	323
3.2 Associations with cardiovascular disease risk factors	324
3.3 Impact of <i>Cdx</i> 2 on the association between serum 25(OH) D level and ED	342
4.0 DISCUSSION	342
5.0 CONCLUSIONS	347
6.0 REFERENCES	348

CHAPTER 8 DISCUSSION AND CONCLUSIONS INCLUDING RECOMMENDATIONS

FOR FUTURE RESEARCH	355
1.0 INTRODUCTION	357
2.0 SUMMARY OF MAIN FINDINGS	357
3.0 KEY METHODOLOGICAL CONSIDERATIONS	359
4.0 IMPLICATIONS OF MAIN RESULTS	361
5.0 FINAL CONCLUSIONS	362
6.0 RESEARCH RECOMMENDATIONS	362
7.0 REFERENCES	365

APPENDICIES	367
APPENDIX 1 CHAPTER 1 - ABSTRACTS	367
APPENDIX 2 CHAPTER 2 – ADDITIONAL INFORMATION ON ERECTILE DYSFUNCTION	373
APPENDIX 3 CHAPTER 3 – SURVEY DOCUMENTS	387
APPENDIX 4 CHAPTER 4 – ADDITIONAL INFORMATION ON VITAMIN D	409
APPENDIX 5 CHAPTER 5 – OBSERVATIONAL STUDY DOCUMENTS	421

LIST OF FIGURES

CHAPTER 1	1
Figure 1.1 The research process followed in the various studies described in this thesis.	9
CHAPTER 2	17
Figure 2.1 Transverse sections of (A) the human penis and (B) the corpus cavernosum	
in a flaccid state	23
Figure 2.2 Signal transduction pathways regulating smooth muscle contraction (A) and	
relaxation (B)	28
CHAPTER 3	147
Figure 3.1. Age-weighted prevalence and severity of erectile dysfunction (ED) by age in	
survey respondents (n=562)	157
Figure 3.2. Forest plot of the multivariate estimates for erectile dysfunction (ED) in	
survey respondents (n=562)	169
CHAPTER 4	183
Figure 4.1. The chemical structure of vitamin D_2 and vitamin D_3 including their	
precursors and main metabolites	187
Figure 4.2. A schematic diagram of the metabolism and mechanism of action of vitamin	
D	195
CHAPTER 5	239
Figure 5.1. Graph of serum 25-hydroxyvitamin D (25(OH)D) concentration versus 5-item	
International Index of Erectile Function (IIEF-5) score (ranging from 5-25 where a higher	
score indicates better erectile function) in study participants	
(n=100)	264
Figure 5.2. Relationship between serum 25-hydroxyvitamin D (25(OH)D) concentration	
and erectile dysfunction (ED, assessed using the 5-item International Index of Erectile	
Function (IIEF-5) and defined as a score ≤21) in study participants (n=100)	264

Figure 5.3. Relationship between serum 25-hydroxyvitamin D (25(OH)D) concentration	
and erectile dysfunction (ED, assessed using the 5-item International Index of Erectile	
Function (IIEF-5) score and defined according to established cut-off levels) in study	
participants (n=100)	265
Figure 5.4. Receiver operating curve (ROC) of serum 25-hydroxyvitamin D (25(OH)D)	
concentrations in discriminating erectile dysfunction (ED, IIEF-5 score \leq 21) from normal	
erectile function	268
CHAPTER 6	283
Figure 6.1. The structure of the vitamin D receptor gene (VDR) and the location of	

common polymorphisms...... 286

LIST OF TABLES

CHAPTER 2	17
Table 2.1. Recommendations for the assessment of erectile dysfunction	31
Table 2.2. The single question global subjective self-assessment	31
Table 2.3. The abbreviated 5-item International Index of Erectile Function (IIEF-5 (5items, 4 in the erectile function domain)	32
Table 2.4. A summary of selected population and community-based studiesinvestigating the prevalence of erectile dysfunction (ED)	37
Table 2.5. Longitudinal cohort studies reporting incidence rates for erectiledysfunction (ED)	52
Table 2.6. Classification of diabetes and glycaemic control using fasting plasma glucose (FPG) and glycated haemoglobin A1c (HbA _{1c}) according to cut-offs recommended by the American Diabetes Association	63
Table 2.7. Classification of the Metabolic Syndrome (MetS) in adult men using the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) Adult Treatment Panel III (ATP III), the International Diabetes Federation (IDF) or most	
recently the joint IDF and AHA/NHLBI criteria	66
Table 2.8. Anthropometric indices and commonly used cut-offs to define obesity and increased risk of cardiometabolic disease in men: Body Mass Index (BMI); waist-to-hip ratio (WHR), waist circumference (WC) and waist-to-height ratio (WHtR)	69
Table 2.9. Classification of overweight and obesity based on Body Mass Index (BMI)	09
and waist circumference (WC) in men	70
Table 2.10. Classification of hypertension according to the 2003 World Health Organization/International Society of Hypertension (WHO/ISH) guidelines	76
Table 2.11. Classification of lipid and triglyceride levels according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP/ATPIII)	78
Table 2.12. Normal reference values for fasting total testosterone (TT), free testosterone (FT), luteinising hormone (LH) and follicle stimulating hormone (FSH)	
levels in men and guidelines for the definition of hypogonadism	89

CHAPTER 3	147
Table 3.1. Age-specific survey response rates comparative to the New Zealand (NZ) male population and the World Health Organization World Standard Population (WSP)	153
Table 3.2. Age-weighted prevalence of sociodemographic characteristics amongst survey respondents (n=562) comparative to the 2013 NZ Census data for men aged 40-69 years (n=768,801)	154
Table 3.3. Crude, age-weighted and World Standard Population (WSP) adjusted prevalence of erectile dysfunction (ED) in various age groups in survey respondents (n=562) using the 5-item International Index of Erectile Function (IIEF-5)	157
Table 3.4. Age-weighted prevalence of sexual activity and function characteristics amongst survey respondents (n=562) by age group in New Zealand men aged 40-70 years	159
Table 3.5. Age-weighted prevalence of sociodemographic, lifestyle and medical characteristics amongst survey respondents (n=562) and their relationship with the prevalence of erectile dysfunction (ED)	163
CHAPTER 4	183
Table 4.1. Vitamin D content of selected food sources	191
Table 4.2. Dietary recommendations for vitamin D in Australia and New Zealand, the USA and Canada	193
Table 4.3. Serum 25-hydroxyvitamin D (25(OH)D) recommendations and the associated health status	198
Table 4.4. Vitamin D status of New Zealand adults (≥15 years) in 2008/2009 shown as crude prevalence rates (%) with 95% confidence intervals	199

CHAPTER 5	239
Table 5.1. The criteria used to define the health conditions assessed in the study	248
Table 5.2. Sociodemographic characteristics of study participants (n=100) compared	
to expected proportions based on the 2013 New Zealand (NZ) Census (n=768,807)	250

Table 5.3. Serum 25(OH)D levels (nmol/L), the prevalence of deficiency and	
insufficiency according to both the current New Zealand Ministry of Health (MOH)	
recommendations and the Endocrine Society recommendations, and vitamin D supplement in take in study participants ($n=100$)	251
supplement in take in study participants (n=100)	251
Table 5.4. Prevalence (count (n)) of erectile dysfunction (ED) assessed using both the	
5-item International Index of Erectile Function (IIEF-5) and the single-item self-	
assessment tool in study participants (n=100)	253
Table 5.5. Health profile including lifestyle and cardiometabolic health markers of	
study participants (n=100) overall and according to the presence of vitamin D	
insufficiency (serum 25(OH)D level <75 nmol/L) and erectile dysfunction (ED, IIEF-5	
score ≤21)	256
Table 5.6. Spearman's correlations between serum 25-hydroxyvitamin D (25(OH)D)	
concentration and erectile dysfunction (ED, assessed using the 5-item International	
Index of Erectile Function (IIEF-5)) with scores ranging from 5-25 where a higher score	
indicates better erectile function) in study participants (n=100)	263
Table 5.7. Logistic regression odds ratios (OR) and 95% confidence intervals [95% CI]	
for lifestyle, metabolic and cardiovascular risk factors predicting erectile dysfunction	
(ED, IIEF-5 score ≤21) in study participants (n=100)	267
CHAPTER 6	283
Table 6.1. A comparison of frequencies of four common polymorphisms of the VDR	
gene (<i>Cdx</i> 2 (rs11568820), <i>Fok</i> I (rs10735810), <i>Bsm</i> I (rs1544410) and <i>Taq</i> I (rs731236))	
in different Caucasian/European populations from selected cross-sectional studies or	202
healthy control groups of case-control studies	293
CHAPTER 7	317
Table 7.1. Primers used in polymerase chain reaction (PCR) assays designed using	
LightCycler Probe Design Software 2.0	322
Table 7.2. High resolution amplicon melt (HRM) conditions used in the LightCycler®	

Table 7.3. Frequency (%) of different genotypes and alleles for four polymorphisms of	
the vitamin D receptor (VDR) gene in study participants (n=100)	323
Table 7.4. Comparison of clinical characteristics between genotypes in thers11568820 (Cdx2) polymorphism in study participants (n=100)	326
Table 7.5. Comparison of clinical characteristics between alleles in the rs11568820(Cdx2) polymorphism in study participants (n=100)	328
Table 7.6 Comparison of clinical characteristics between genotypes in the rs10735810(FokI) polymorphism in study participants (n=100)	330
Table 7.7. Comparison of clinical characteristics between alleles in the rs10735810(FokI) polymorphism in study participants (n=100)	332
Table 7.8. Comparison of clinical characteristics between genotypes in the rs1544410(Bsml) polymorphism in study participants (n=100)	334
Table 7.9. Comparison of clinical characteristics between alleles in the rs1544410(Bsml) polymorphism in study participants (n=100)	336
Table 7.10. Comparison of clinical characteristics between genotypes in the rs731236(TaqI) polymorphism in study participants (n=100)	338
Table 7.11. Comparison of clinical characteristics between alleles in the rs731236(<i>Taq</i> I) polymorphism in study participants (n=100)	340
Table 7.12. Logistic regression odds ratios (OR) and 95% confidence intervals (CI) for age, serum 25(OH)D and rs11568820 ($Cdx2$) VDR polymorphism as predictors of erectile dysfunction (IIEF-5 score ≤ 21) in study participants (n=100)	341
creetile dystatiction (iici -3 score set) in stady participants (ii-too)	541

LIST OF ABBREVIATIONS

1α-hydroxylase	25-hydroxyvitamin D 1-alpha-hydroxylase
24-hydroxylase	1,25 dihydroxyvitamin D 24-hydroxylase
1,25(OH) ₂ D ₃	1,25-hydroxyvitamin D₃ (calcitriol)
25(OH)D	25-hydroxyvitamin D
95% CI	95% confidence interval
χ^2	Chi-squared
A:G	Android-to-gynoid fat ratio
Alx@HR75	Augmentation index adjusted to a heart rate of 75 bpm
AP@HR75	Augmentation pressure adjusted to a heart rate of 75 bpm
ANOVA	One-way analysis of variance
ANZSCO	Australian and New Zealand Standard Classification of Occupations
AUC	Area under curve
BACH	Boston Area Community Health Survey
BF%	Body fat percentage
BMI	Body Mass Index
BMSFI	Brief Male Sexual Function Inventory
BP	Blood pressure
BPH	Benign prostatic hyperplasia
CATI	Computer Assisted Telephone Interview
СС	Corpus cavernosum
CHD	Coronary heart disease
CVD	Cardiovascular disease
CVOD	Corporal veno-occlusive dysfunction
DBP	Diastolic blood pressure
DE	Delayed ejaculation
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
ED	Erectile dysfunction
EDV	End-diastolic velocity
EMAS	European Male Ageing Study
EPIC-PAQ	European Prospective Investigation into Cancer and Nutrition Physical
	Activity Questionnaire
FAMAS	Florey Adelaide Male Ageing Study

FFQ	Food Frequency Questionnaire
FPG	Fasting plasma glucose
FPI	Fasting plasma insulin
FT	Free testosterone
GOSS	Global Online Sexuality Survey
GSSAB	Global Study of Sexual Attitudes and Behaviours
HDL-c	High-density lipoprotein cholesterol
HOMA1	Homeostatic Model Assessment Index 1
HPFS	Health Professionals Follow-Up Study
HR	Heart rate
HRM	High resolution amplicon melt
ICSM	International Consultation in Sexual Medicine
IHD	Ischemic heart disease
IIEF	International Index of Erectile Function
IIEF-5	5-item International Index of Erectile Function
IQR	Interquartile range
IR	Insulin resistance
LD	Linkage disequilibrium
LDL-c	Low-density lipoprotein cholesterol
MAF	Minor allele frequency
MALES	Multinational Men's Attitudes to Life Events and Sexuality
MATeS	Men in Australia Telephone Survey
MetS	Metabolic syndrome
MI	Myocardial infarction
MMAS	Massachusetts Male Aging Study
mRNA	Messenger ribonucleic acid
MSAM-7	Multinational Survey of the Aging Male
NHANES	National Health and Nutrition Examination Survey
NHSLS	National Health and Social Life Survey
NPT	Nocturnal penile tumescence
NZANS	New Zealand Adult Nutrition Survey
OR	Odds ratio
PA	Physical activity
PCa	Prostate cancer

PCAW	Prostate Cancer Awareness Week
PCR	Polymerase chain reaction
PDE ₅	Phosphodiesterase type 5
PDS	Penile Doppler sonography
PE	Premature ejaculation
PHQ-6	9-item Patient Health Questionnaire
PP	Pulse pressure
PSA	Prostate specific antigen
PSV	Peak systolic velocity
PTH	Parathyroid hormone
PTSD	Post-traumatic stress disorder
PVD	Peripheral vascular disease
PWA	Pulse Wave Analysis
PWV	Pulse Wave Velocity
RCT	Randomised controlled trial
RFLP	Restriction fragment length polymorphisms
RR	Relative risk
r _s	Spearman's rho
RXR	Retinoid-X receptor
SBP	Systolic blood pressure
SD	Standard deviation
SHBG	Sex hormone binding globulin
SHIM	Sexual Health Inventory for Men
SMC	Smooth muscle cell
SNP	Single nucleotide polymorphism
T2DM	Type 2 diabetes mellitus
ТС	Total cholesterol
TG	Triglyceride
ТТ	Total testosterone
Tukey's HSD	Tukey's honest significant difference
UTR	Untranslated region
VDR	Vitamin D receptor
VDR	Vitamin D receptor gene
VDRE	Vitamin D response element

VO ₂ peak	Maximal oxygen consumption
WAMHS	Western Australia Men's Health Study
WC	Waist circumference
Well-LaD	Wellness, Lifestyle and Diet
WHO	World Health Organization
WHR	Waist-to-hip ratio
WHtR	Waist-to-height ratio
WSP	World Standard Population
	C C