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Abstract ii

Abstract

Anthropogenic climate change, caused primarily by excessive emissions of carbon
dioxide, has led to a renewed interest in char, the solid product of pyrolysis. When
applied to soil as biochar it can both sequester carbon and improve soil function. To
make its manufacture environmentally friendly and economically viable it is important

to maximise char yield, which can be done by promoting secondary reactions.

This research shows that secondary reactions, which are enhanced by prolonged
vapour-phase residence time and concentration, not only increase the char yield but are
the source of the majority of the char formed. All four biomass constituents
(extractives, cellulose, hemicellulose and lignin) undergo secondary reactions
concurrent with primary reactions over the entire pyrolysis range = 140 to 500 °C,
which makes it practically impossible to separate them. Secondary char formation was
confirmed to be exothermic which affects the overall heat of pyrolysis. Impregnating
the feedstock with the elements K, Mg and P, which are plant macro-nutrients naturally
present in biomass, resulted in the catalysis of secondary char formation. The results
reveal that a first order reaction model does not describe pyrolysis accurately when char

formation is enhanced by catalysis and secondary reactions.

Secondary char can be enhanced by increasing the particle size but there is a
limit due to increased cracking and fracturing of the pyrolysing solid. This limitation is
overcome by pyrolysis in an enclosed vessel, termed autogenous pressure pyrolysis,
which was discovered to cause significant changes in the volatile pyrolysis products;
indicating the co-production of a high quality liquid. This process, however, negatively
affects the char properties relevant for biochar like the surface area, similar to self-
charring and co-carbonisation of condensed volatile pyrolysis products. To increase
research capabilities a unique high temperature/ high pressure reactor (600 °C at
20 MPa) was designed to allow the detailed characterisation of all three pyrolysis
product classes under extreme pyrolysis conditions. This was demonstrated to be
invaluable for understanding the underlying pyrolysis mechanism and physical

processes at play.
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