

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Are low-producing plants sequestering carbon at a greater rate than high-producing plants?

A test within the genus Chionochloa

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology

> Massey University, Palmerston North, New Zealand

Matthew Phillip Sijbe Dickson

2016

Abstract

Plant life and primary production play an important role in the global carbon (C) cycle through the fixing of atmospheric C into the terrestrial biosphere. However, the sequestration of C into the soil not only depends on the rate of plant productivity, but also on the rate of litter decomposition. The triangular relationship between climate, litter quality, and litter decomposition suggests that whilst low-producing plants fix C at a slower rate than highproducing plants, they may release C at an even slower rate, due to the production of a recalcitrant litter.

Here, the relationships between environment, productivity, litter quality and decomposition are investigated to determine their relative influences on C sequestration for taxa in the genus *Chionochloa*. Annual productivity was measured *in situ* for 23 taxa located across New Zealand, whilst litter and soil were collected for analyses and two *ex-situ* decomposition experiments; litter incubation on a common alpine soil, and litter incubation on each taxon's home-site soil.

Plant growth rate was found to be positively correlated with both litter nitrogen and litter fibre content. Litter decomposition on the common soil was instead negatively correlated with lignin content, which showed a strong correlation with phylogeny, as opposed to environment or growth rate. When incubated on home-site soils, litter quality had no influence on decomposition, which was instead positively correlated with the rate of soil C decomposition, and negatively correlated with both soil organic matter and soil water content.

On the common soil there were weak correlations between productivity and decomposition; however the proportional increase in productivity was greater than the corresponding increase in decomposition, resulting in high-producing plants sequestering C at a greater rate than low-producing plants. However, there was no correlation between productivity and decomposition on the home-site soil, with soil water content being a better predictor of C sequestration rate than productivity.

Despite the range of variation in morphology, ecophysiology, productivity and habitat displayed within the *Chionochloa* genus, taxa all produced litter of a very similar quality. Breakdown of that litter is then most strongly influenced by the environment in which decomposition occurs, as opposed to the quality of the litter. Any subsequent differences in rates of C sequestration are therefore most influenced by the environment decomposition occurs in, with wet and cool environments likely to result in increased rates of C sequestration, independent of the rate of productivity.

IV

Firstly, thank you to my supervisor Dr Jill Rapson. Your knowledge, guidance, and critique have been of great assistance. I have greatly enjoyed our ecological and non-ecological discussions and debates.

My appreciation goes also to those who gave insight and comment into topics integral to this research: Dr Kevin Tate, Dr Matthew Krna, and PhD candidate Helen Walker. Thank you for sharing your knowledge.

Thank you to Matthew Krna, Hamish Baird, Zuni Steer, Mark Dickson, Jennifer Dickson, Thurza Andrew, James Voss, and Josh Olsen for assistance with field work, and similarly to Stacey Gunn for laboratory assistance. Thanks also to Ian Furkert, Helen Walker, Paul Barrett, and Cleland Wallace of Massey University for providing expertise in the laboratory, and technical experience. All your help was much appreciated.

Thank goes to the National Institute for Water and Atmospheric Research (NIWA) for providing annual climate data, Rachel Summers of Massey University for GIS assistance, and PhD candidate Gregory Nelson of Otago University for provision of and assistance with *Chionochloa* genetic distance matrices.

My appreciation goes also to Iris and Kate Scott for kindly providing land access to *Chionochloa vireta* in the Rees Valley, Kevin Henderson for kindly providing accommodation and land access to Poplars Range, and to the Department of Conservation (DoC), with particular thanks to the Stewart Island DoC boat *Hananui* and Skipper Stephen Meads, for kindly providing water transport.

This research was made possible through funding by the Miss E.L. Hellaby Indigenous Grasslands Research Trust, Project Tongariro, the Heseltine Trust, and the Ecology Group of the Institute for Agriculture and Environment, Massey University. Thank you for supporting environmental research.

Lastly, much love and thanks to my family for supporting me in my studies, and to God, who has been generous and faithful in all things.

Contents

Abstract		III
Acknowledge	ements	V
Contents		VII
Chapter 1: In	ntroduction	1
С	arbon Cycling and Carbon Sequestration	3
C	D ₂ and Global Warming	3
Li	tter Quality, Productivity, and Decomposition	4
Tł	neory and Hypotheses	5
Cl	nionochloa as a Suitable Study System	7
Re	esearch Sites	11
Ol	ojectives	11
Re	eferences	13
Chapter 2: V	ariation in Litter quality within a congeneric group: Is litter	
qu	ality more related to environment or phylogeny?	17
In	troduction	19
	Litter Quality	19
	Factors Influencing Litter Quality	19
	Measures of Litter Quality	20
	Plant Reponses to Stress	22
	Genetic Distance and Plant Functional Group	22
	Hypotheses and Aims	23
Μ	ethods	23
	Experimental Design	23
	Environmental Data	24
	Soil Collection and Preparation	24
	Litter Collection and Preparation	25
	Litter Chemical Analyses	25
	Analysis	26
Re	esults	27
	Litter Chemistry	27
	General linear models	31
	Genetic relatedness	32
Di	scussion	34
	Leaf Nitrogen Content	34
	Leaf Structural Components	35
	Phenolics, C:N, and Soluble Compounds	36
	Environmental Control of Litter Quality	37
	Genotypic Control of Litter Quality	38
	Conclusions and Implications	39

References		40
Chapter 3: Investigati rate, and	ing relationships between environment, plant growth litter quality: Can litter quality be determined from	
plant grov	wth rate?	49
Introduction	n	51
]	Plant Productivity	51
]	Influence of Growth Rate on Litter Quality	53
]	Environmental and Resource Stresses	53
	Aims and Hypothesis	54
Methods		54
	Species Sampled and Locations	54
]	Experimental Design	54
]	Plant Growth Measurements	55
	Annual Productivity	55
]	Litter Production	58
]	Productivity Measures	59
1	Analysis	60
Results		61
1	Measures of Productivity	61
(General Linear Models	66
]	Productivity and Litter Quality	66
]	Productivity and Genotype	68
Discussion		68
]	Productivity Measures	68
]	Productivity and Environmental Stress	69
]	Influence of Genotype on Productivity	71
]	Links between Productivity and Litter Quality	71
(Conclusions and Implications	73
References		74
Chapter 4: Is litter q	uality the determining factor in litter decomposition within	
the genus	Chionochloa? A test under controlled conditions	79
Introduction	n	81
]	Decomposition and C sequestration	81
]	Factors Determining Decomposition	82
]	Litter Quality Parameters and Decomposition	82
]	Hypotheses and Aims	84
Methods		85
]	Location, Species Sampled, Litter Collection and Preparation	85
]	Experimental Design	85
	Soil Collection	85
	Soil Preparation and Analysis	86
]	Incubation Chambers	86
r	Titration	87
(Common Soil Incubation	88
	Site Soil Incubation	88
	Analysis	89

Results	89
Decomposition Substrate	89
Temporal Trends in Decomposition	91
Rates of Litter Decomposition	91
Cumulative litter carbon loss	93
General Linear Models of Litter Decomposition	96
General Linear Models for Soil C Decomposition	97
Discussion	99
Common Soil Litter Decomposition	100
Litter Quality as a Predictor of Litter Decomposition	101
Home-Site Soil Litter Decomposition	102
Soil Characteristics as Predictors of Litter Decomposition	102
Conclusions, Implications, and Limitations	104
References	106
Appendix	111
Chapter 5: Synthesis and Discussion: Are low-producing plants	
sequestering C at a greater rate than high-producing plants?	113
Introduction	115
Synthesis of Findings in Chionochloa	115
P:D Ratios and C Sequestration	116
Relationships between Productivity and Decomposition	117
Relationships between Productivity and C sequestration	119
Rate of Productivity, Litter Quality, and C Sequestration	123
Soil Characteristics and C Sequestration	124
C Sequestration in Chionochloa Grassland	126
Climate Change and C Sequestration	127
Limitations and Future Research	128
Conclusions and Implications	128
References	130