

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Physiology of Chatham Island Forget-me-not (Myosotidium hortensia) Seed

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Seed Science and Technology at Massey University, Palmerston North, New Zealand.

> Craig Robert McGill 2003

ABSTRACT

Chatham Island forget-me-not (*Myosotidium hortensia* (Decne) Baillon) is endemic to the Chatham Islands where it is mainly confined to the outer islands. There is speculation that seed of *M. hortensia* is recalcitrant and reports that germination can be slow and erratic. Moreover there is little information on the seed biology of *M. hortensia* available.

In this study the seed structure and composition of the seed storage reserves of *M. hortensia* were determined. The seed is a dicotyledon. The embryo is predominantly cotyledonary tissue with a only small embryo axis present. There appears to be a single cell thick layer of endosperm tissue between the embryo and seed coat. Food reserves are stored as both protein and oil with no starch reserves apparent. The seed contains 24% oil and therefore can be considered an oilseed. These oil reserves include the commercially important γ -linolenic (*cis*, *cis*, *cis*-6, 9, 12-octadecatrienoic) acid (9% of the fatty acid content).

Seed of *M. hortensia* was evaluated for recalcitrant behaviour by determining if desiccation to low seed moisture content caused a loss of viability. Seed was harvested at two moisture contents, 47.4% (green seed) and 35.5% (black seed), and air dried to a final moisture content of 7.5%. Seed viability and germination performance were monitored at harvest and as moisture content declined. At 7.5% seed moisture content, and 82% and germination 92% for seed harvested at 47% seed moisture content, and 82% and 78%, respectively, for seed harvested at 36% seed moisture content. Within each colour classification, after desiccation there was no significant difference in germination compared to that at harvest, indicating that *M. hortensia* seed can be desiccated to a low seed moisture content without loss of germination and is therefore not recalcitrant.

Seed stored at 5°C and 7.5% seed moisture content showed no decline in viability after 21 months, but, seed stored at the same temperature and 9.5% seed moisture content showed a significant loss of viability after 9 months storage. The loss of viability at this higher (9.5%) seed moisture content is characteristic of oilseeds, but it is not clear whether the high oil content of the seed alone can account for the loss of viability after nine months storage at a temperature of 5°C.

This study confirmed earlier reports that germination of *M. hortensia* seed is slow and erratic. At maturity seed of *M. hortensia* is dormant. Seed dormancy is a function of the seed coat rather than the embryo. The dormancy is likely to be a result of either physical constraint of embryo growth or restriction of gas exchange by the seed coat, or a combination of both. Removal or weakening of the seed coat allowed germination to proceed. However, some of the treatments used to weaken the seed coat resulted in an increase in abnormal seedling development. An effective and non-damaging technique for alleviating dormancy was to prick the seed coat with a 0.6-0.8mm diameter dissecting needle in the middle of the cotyledons.

ACKNOWLEDGMENTS

Many people have provided help, advice and support during this study.

I would firstly like to thank Associate Professor David Fountain and Dr Heather Outred who were my supervisors for the majority of this study. Their guidance, critical comments and patient encouragement throughout this study was much appreciated. I would also like to thank Professor Murray Hill and Mrs Karen Hill, who were my supervisors for the first part of the study, for encouraging me to begin this study and for their guidance through its early stages.

I would also like to thank Professor Ken Milne, Head of the then Department of Plant Science and Professor Russ Tillman, Head of the Institute Natural Resources, for both encouraging me to undertake this study and allowing me time to do so. I also thank my employer, Massey University, for supporting me in this study by both providing study facilities and time.

This research would not have been possible without funding and I thank Sir Patrick Goodman for his sponsorship of this study through the Massey University Agricultural Research Foundation.

Many people have contributed to specific aspects of this study. These include

Mr Duncan Hedderley, Institute of Information Sciences and Technology for statistical advice.

Mr. Robert Southward, here, at the Centre of Plant Reproduction and Seed Technology for his help in establishing the seed production site.

Ms Liz Nickless and Dr Al Rowland, both in the Institute of Molecular BioSciences for advice during the seed histology study.

Dr John McIntosh in the Institute of Food, Nutrition and Human Health for his guidance in the lipid studies. Also Mr Ruwan Dissanayake and Mr Chris Rawlingson both in the Institute of Natural Resources, for providing instruction on the use of the Hewlett-Packard Gas Chromatograph.

Mr Raymond Bennett and Mr Doug Hopcroft at the Keith Williamson Electron Microscope Unit, HortResearch Ltd., Palmerston North, for assistance with the electron microscopy.

Lastly, I would like to thank my family for their support and encouragement throughout this study.

TABLE OF CONTENTS

Page

TITLE		
ABSTRACT .		
ACKNOWLED	OGMEN	TS iv-v
TABLE OF CO	ONTEN	TS vi-x
LIST OF TABI	LES	xi-xii
LIST OF FIGU	JRES .	
LIST OF PLAT	TES	xii-xiv
CHAPTER 1 I	NTROD	UCTION
1.1	Introdu	ction
1.2	Aims o	f the Study
CHAPTER 2	LITER/	ATURE REVIEW 3-34
2.1	Chatha	am Island forget-me-not (<i>Myosotidium hortensia</i>)
2.2	The Ec	cology of the Chatham Islands 4
2.3	Boragi	naceae
	2.3.1	Taxonomy
	2.3.2	Pollinators
	2.3.3	Economically Important Boraginaceae
2.4	Seed S	Storage Reserves
	2.4.1	Oils and Fats
		2.4.1.1 Oil storage reserves in Boraginaceae
		2.4.1.2 Engineering seed oils for commercial use
	2.4.2	Proteins
	2.4.3	Carbohydrates
2.5	Seed S	Storage
	2.5.1	Orthodox Seed
		2.5.1.1 Seed moisture content and temperature
		2.5.1.2. Ultra-dry storage
		2.5.1.3 Cryogenic storage
	2.5.2	Recalcitrant Seed
		2.5.2.1 Identification of recalcitrant seed
		2.5.2.2 Storage of recalcitrant seed

2.6	Dorma	ancy
	2.6.1	Definitions of Dormancy 24
	2.6.2	Coat-imposed dormancy
	2.6.3	Embryo Dormancy
	2.6.4	After-ripening
	2.6.5	Temperature Requirements
	2.6.6	Light Requirements
	2.6.7	Dormancy in Boraginaceae
CHAPTER 3	SEED	STRUCTURE AND SEED STORAGE RESERVES 35-82
3.1	Introdu	uction
3.2	Materi	als and Methods
	3.2.1	Seed Material
	3.2.2	Seed Harvest and Sub-sampling
	3.2.3	Seed Histology
		3.2.3.1 Killing and fixing seed material
		3.2.3.2 Dehydration
		3.2.3.3 Infiltration
		3.2.3.4 Embedding
		3.2.3.5 Microtoming 39
		3.2.3.6 Staining
		3.2.3.6.1 Dewaxing and ethanol series
		<i>3.2.3.6.2 Safranin-fast green</i>
		3.2.3.6.3 Sudan IV
		3.2.3.6.4 Coomassie Brilliant Blue R250
		3.2.3.6.5 Potassium iodide/iodine
		3.2.3.6.6 Schiff's Reagent
		3.2.3.6.7 Evaluation
	3.2.4	Transmission Electron Microscopy
		3.2.4.1 Fixation and evaluation of seed material 44
	3.2.5	Lipid Analysis
		3.2.5.1 Gas chromatography 45
		3.2.5.1.1 Derivation of fatty acids
		3.2.5.1.2 Hydrogenation of fatty acid derivatives 46
		3.2.5.1.3 Analysis of fatty acids
		3.2.5.1.4 Correction for loss of glycerol residues 48

		3.2.5.2 Soxhlet extraction
		3.2.5.3 Methanol-chloroform extraction
		3.2.5.4 Thin layer chromatography 51
		3.2.5.4.1 Lipid extraction
		3.2.5.4.2 Preparation of plates
		3.2.5.4.3 Lipid component identification
3.3	Result	s
	3.3.1	General Characteristics
	3.3.2	Histology
	3.3.3	Transmission Electron Microscopy
	3.3.4	Lipid Analysis
		3.3.4.1 Gas chromatography
		3.3.4.2 Soxhlet and methanol-chloroform extractions 72
		3.3.4.3 Thin layer chromatography
3.4	Discus	ssion
	3.4.1	Histology
	3.4.2	Lipid Analysis
		3.4.2.1 Lipid quantification
		3.4.2.2 Fatty acid composition
		3.4.2.3 Commercial importance of γ-linolenic acid
	3.4.3	Protein Content
	3.4.4	Conclusions
CHAPTER 4	SEED	DESICCATION AND STORAGE 83-110
4.1	Introduction	
4.2	Material and Methods	
	4.2.1	Seed Moisture Content, Thousand Seed Weight,
		Viability and Germination Testing
		4.2.1.1 Seed moisture content and thousand seed weight 83
		4.2.1.2 Seed viability
		4.2.1.3 Seed germination
		4.2.1.4 Calculation of the rate of germination (T ₅₀) 89
	4.2.2	Desiccation Experiment
	4.2.3	Seed Storage Experiment
	4.2.4	Relative Humidity
	4.2.5	Data Analysis

viii

4.3	Result	s
	4.3.1	Desiccation Experiment
	4.3.2	Storage Experiment
		4.3.2.1 Open storage
		4.3.2.2 Closed storage
4.4	Discus	ssion
	4.4.1	Relative Humidity Measurements
	4.4.2	Desiccation Experiment 101
		4.4.2.1 Viability and germination changes during desiccation 102
		4.4.2.2 Dormancy in <i>M. hortensia</i>
	4.4.3	Storage 105
		4.4.3.1 Storage behaviour of <i>M. hortensia</i>
		4.4.3.2 The effect of storage on dormancy 109
	4.4.4	Conclusions
CHAPTER 5	SEED	GERMINATION AND DORMANCY 111-136
5.1	Introdu	uction
5.2	Materi	als and Methods
	5.2.1	Seed Material, Harvest and Sub-sampling
	5.2.2	Temperature Gradient Plate Experiment
	5.2.3	Preliminary Dormancy-breaking Experiment 113
	5.2.4	Main Dormancy-breaking Experiments
	5.2.5	Scanning Electron Microscopy of the Seed Coat 115
		5.2.5.1 Fixation and scanning of the seed coat
	5.2.6	Data Analysis
5.3 Results		ts
	5.3.1	Temperature Gradient Plate 118
	5.3.2	Preliminary Dormancy-breaking Experiment 118
	5.3.3	Main Dormancy-breaking Experiments
		5.3.3.1 Rate of germination 118
		5.3.3.2 Radicle emergence, normal and abnormal
		germination and dead seed
		5.3.3.3 Seed Moisture Content 125
	5.3.4	Scanning Electron Microscopy of the Seed Coat 125
5.4	Discu	ssion
	5.4.1	Temperature Gradient Plate

ix

	5.4.2	Preliminary Dormancy-breaking Experiment 129
	5.4.3	Main Dormancy-breaking Experiments and Scanning
		Electron Microscopy 130
		5.4.3.1 Role of the seed coat in the regulation of dormancy 130
		5.4.3.2 Effect of Dormancy-breaking treatments on seedling
		development
	5.4.4	Conclusions
CHAPTER 6	CONC	LUSIONS
LITERATURE) 140-160
APPENDICE	S	
Apper	ndix 1	Chromatogram of fatty acids separated on the packed
		column
Apper	ndix 2	Specifications of the BPX-70 capillary column
Apper	ndix 3	Chromatogram of fatty acids separated on the capillary
		column
Apper	ndix 4	Chromatogram of hydrogenated fatty acids separated on
		the capillary column
Apper	ndix 5	Germination of seed of M. hortensia with and without
		Thiram 80W
Apper	ndix 6	Normal germination percentage of M. hortensia seed after
		removal from the temperature gradient plate
Apper	ndix 7	Seed moisture content data for the first dormancy-breaking
		experiment

x

LIST OF TABLES

Table 3.1	Nutlet harvest date and start time of experimental work
Table 3.2	The mean number and diameter of oil or protein bodies and protein
	inclusions in the cotyledon cells of <i>M. hortensia</i>
Table 3.3	Retention times (minutes) and percentage of fatty acid methyl esters
	extracted from M. hortensia (unsaturated samples A and B and
	hydrogenated sample B) seed and separated on a 2.6 metre (15%
	ethylene glycol succinate (EGSS-X) on Chromosorb W A/W) packed
	column
Table 3.4	Retention times (minutes) and weight and percentage of fatty acid
	methyl esters extracted from M. hortensia seed (samples C-F) and
	separated on a BPX-70 capillary column
Table 3.5	Retention times (minutes) and percentage of fatty acid methyl
	esters extracted from M. hortensia seed (samples A (unsaturated) and
	B (hydrogenated)) and separated on a BPX-70 capillary
	column
Table 4.1	Changes in moisture content, viability, germination and time to 50%
	germination (T_{50}) of seed dried as a single layer of nutlets in a
	controlled environment room at 20°C
Table 4.2	Changes in germination of seed and nutlets of M. hortensia in open
	and closed storage at 5°C
Table 4.3	Normal and abnormal germination and dead seed percentage of seed
	and nutlets of <i>M. hortensia</i> in closed storage at 5°C pooled for
	sampling time (0, 9, 14 and 21 months)
Table 4.4	Changes in the time to 50% germination (T_{50}) of seed and nutlets of
	<i>M. hortensia</i> in closed storage at 5°C 100
Table 5.1	Germination rate, radicle emergence, normal and abnormal germination
	and dead seed percentage of M. hortensia seed harvested in 1997 after
	dormancy-breaking treatment 121
Table 5.2	Germination rate, radicle emergence, normal and abnormal germination
	and dead seed percentage of M. hortensia seed harvested in 1997 and
	1998 after dormancy-breaking treatment
Table A.1	The effect of Thiram 80W on seed germination of <i>M. hortensia</i> 165

Table A.2	Germination of peeled and unpeeled seed of <i>M. hortensia</i> , with
	and without washing, after removal from different temperatures on
	a temperature gradient plate
Table A.3	Moisture content of 1997-harvest M. hortensia seed after
	pre-conditioning

LIST OF FIGURES

Figure 3.1	Stylised diagram of a M. hortensia seed showing the approximate size and
	position of the embryo axis, cotyledon and testa (seed coat) 55
Figure 5.1	Comparison between the rate of radicle growth in peeled seed and
	radicle emergence in unpeeled seed

LIST OF PLATES

Plate 3.1	M. hortensia fruiting head showing both flower clusters and nutlets . 54
Plate 3.2	M. hortensia fruiting head showing both green and black nutlets 54
Plate 3.3	A single seed of <i>M. hortensia</i> showing the wrinkled and
	leathery appearance of the seed coat
Plate 3.4	Transverse section through a M. hortensia cotyledon stained with
	Coomassie Brilliant Blue R250 showing staining to the cotyledon,
	vascular tissue and epidermis
Plate 3.5	Transverse section through a <i>M. hortensia</i> cotyledon stained with
	Coomassie Brilliant Blue R250 showing staining to protein bodies in
	the cotyledon and vascular tissue
Plate 3.6	Transverse section through the testa and endosperm of a M. hortensia
	seed stained with Coomassie Brilliant Blue R250 showing staining
	to protein bodies in the endosperm layer
Plate 3.7	Transverse section through a M. hortensia embryo stained with
	safranin and fast green showing staining to cell wall cellulose,
	cytoplasm and nuclei
Plate 3.8	Longitudinal section through a <i>M. hortensia</i> embryo stained for one
	hour with Schiff's Reagent showing staining to cell nuclei and
	non-specific staining in the epidermal region

Plate 3.9	Transverse section through a M. hortensia seed stained with safranin
	and fast green showing the thickened cell walls of the endosperm
	compared to the cotyledon and epidermis cell walls
Plate 3.10	Transverse section through a M. hortensia seed stained with safranin
	and fast green showing the thickened cell walls of the endosperm 60
Plates 3.11	Hand section through a <i>M. hortensia</i> seed stained with Sudan IV
	showing oil droplets from disrupted cells
Plates 3.12	Hand section through a M. hortensia seed stained with Sudan IV
	showing oil droplets from disrupted cells
Plate 3.13	Hand section through a Limnanthes alba seed stained with Schiff's
	Reagent for one hour showing staining to nuclei and non-specific
	staining in some cells
Plate 3.14	Hand section through a Pisum sativum radicle stained with
	Schiff's Reagent for one hour showing staining to nuclei and
	non-specific staining in cells
Plate 3.15	Transverse section through a M. hortensia cotyledon stained with
	Toluidine Blue showing the vascular bundle within the cotyledon
	and single-cell outer epidermis 64
Plate 3.16	Section through the seed coat of M. hortensia stained with Toluidine
	Blue showing the testa and single cell layer of remnant endosperm . 64
Plate 3.17	Transverse section through a M. hortensia embryo showing the cells
	heavily packed with lipid bodies and a smaller number of protein
	bodies
Plate 3.18	Transverse section across a M. hortensia embryo cell showing a
	single nucleus, (containing a nucleolus), surrounded by lipid and
	protein bodies
Plate 3.19	Thin layer chromatography (TLC) plate showing fractionation of lipid
	extracted from M. hortensia seed into the triacylglycerol (TAG), sterol
	and phospholipid (PL) components
Plate 4.1	M. hortensia embryo stained with 2,3,5-triphenyl tetrazolium chloride
	at 20°C for 24 hours. There is no staining to the embryo. The embryo
	is classified as non-viable
Plate 4.2	M. hortensia embryo stained with 2,3,5-triphenyl tetrazolium chloride
	at 20°C for 24 hours. There is uniform staining to both the radicle and
	cotyledons. The embryo is classified as viable

xiii

Plate 4.3	M. hortensia embryo stained with 2,3,5-triphenyl tetrazolium chloride
	at 20°C for 24 hours. There is incomplete staining to the cotyledons
	but more than 50% of the cotyledon tissue is stained. The embryo is
	classified as viable
Plate 4.4	M. hortensia embryo stained with 2,3,5-triphenyl tetrazolium chloride
	at 20°C for 24 hours. There is uniform staining to the radicle but
	insufficient staining to the cotyledons. The embryo is classified as
	non-viable
Plate 4.5	M. hortensia embryo stained with 2,3,5-triphenyl tetrazolium chloride
	at 20°C for 24 hours. There is insufficient staining to the cotyledons
	near the radicle and uneven staining to the radicle. The embryo is
	classified as non-viable
Plate 4.6	M. hortensia embryo stained with 2,3,5-triphenyl tetrazolium chloride
	at 20°C for 24 hours. There is uniform staining to the cotyledons but
	no staining to the radicle. The embryo is classified as non-viable 87
Plate 5.1	Transverse section across the seed coat of <i>M. hortensia</i> showing
	heavy ridging on the outer coat surface and the continuous nature of
	the coat surface
Plate 5.2	Outer seed coat surface of M. hortensia seed showing ridges on the
	coat surface and the lack of spaces or fissures in the coat surface 126
Plate 5.3	Transverse section across the seed coat of <i>M. hortensia</i> showing
	vascular elements below the outer surface of the seed coat 127
Plate 5.4	Transverse section across the surface of M. hortensia seed coat
	showing details of the secondary thickening in the vascular
	elements
Plate 5.5	Transverse section across the seed coat of M. hortensia showing the
	zone of empty cells immediately above the inner surface of the seed
	coat
Plate 5.6	Section across the inner surface of M. hortensia seed coat showing
	hummock-like appearance of the inner coat
Plate A.1	Chromatogram of fatty acids before and after hydrogenation
	separated on a packed column 161

xiv

CHAPTER 1 INTRODUCTION

1.1 Introduction

We are the custodians of a New Zealand heritage of world interest

Sir Charles Fleming

New Zealand's long isolation from other land masses has led to the development of a distinct flora (Martin, 1961). Approximately 75 percent ((Laing and Blackwell, 1949) to around 80 percent (Mark and Adams, 1979) of the indigenous flowering plants in New Zealand are not encountered elsewhere. The flora of New Zealand represents a unique genetic resource (Fountain and Outred, 1991). At the Tauranga Native Plants Symposium, held in 1990, Given reported that between 10% and 15% of New Zealand flora is either threatened or restricted to localised areas. He comments "conservation of these plants will require an integrated approach involving on-site and off-site techniques as well as vegetation restoration." (Given, 1990). The success of attempts to conserve and regenerate flora in the natural environment will in part be dependent on our ability to store. germinate and propagate seeds of native species. Yet our knowledge of the germination characteristics and storage requirements of many of these species is at best limited and often nonexistent (Fountain and Outred, 1991; Bannister and Jameson, 1991). Information that is available is frequently anecdotal and found in nonscientific literature such as home gardening guides (Bannister and Jameson, 1991). Moreover, this information is often conflicting or inconclusive.

Chatham Island forget-me-not (*Myosotidium hortensia* (Decne) Baillon) is endemic to the Chatham Islands of New Zealand (Crisp *et al.*, 2000). Maloy (1992) reports the seed will germinate readily if fresh, but Metcalf (1995) comments that the germination is erratic and seedlings may not emerge from seed shed in December-January until the following spring. He also recommends the seed be germinated in cool conditions (10°C to 15°C). Wilson and Given (1989) confirm Metcalf's observations reporting that the seed can take up to twelve months to germinate. Metcalf (1995) also suggests the seed will store for twelve

months or more. Fountain and Outred (1991) comment that *M. hortensia* produces seedlings shortly after shedding and speculate that this may indicate recalcitrant behaviour but that the moisture status of seed would need to be determined to confirm this.

1.2 Aims of the Study

The aims of this study were therefore to:

- 1. determine if seed of Myosotidium hortensia is recalcitrant or orthodox
- 2. determine the longevity of seed of *Myosotidium hortensia* under storage conditions of low temperature and low seed moisture
- determine the nature of the seed storage reserves in seed of Myosotidium hortensia
- 4. determine if the germination behaviour of seed of *Myosotidium hortensia* is erratic as reported by Metcalf (1995) and, if so, the reasons for this erratic behaviour.