*
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.


https://core.ac.uk/display/148644216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modelling Repeated Epidemics with General Infection

Kernels.

This thesis is presented in partial fulfilment of the requirement for the
Degree of Masters of Information Science in Mathematics At Massey

University, Albany, New Zealand

Joanne L. Mann

2003



Abstract

This thesis is on mathematical modelling in epidemiology, exploring the

generic characteristics of diseases in two different population structures.

Integral equations are used, to model the epidemics in each generation (of
the epidemic). Difference equations are then used to model the change in
the populations between epidemics. Initially, single dimension populations
are modelled, where the entire population is considered to be one class.
Then the population is split into two classes and a similar analysis is
performed, with critical differences noted between the two structures. An

analytical approach is taken, with numerical examples.

The work in this thesis is not specific to one disease, the main focus is to

develop a stepped process between generations of the epidemic and analyse

the behaviour.
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Chapter 1 Introduction.

Since 1760, when Daniel Bernoulli developed a mathematical model of the
impact of vaccination against smallpox', there has been an increasing
demand for models of various infections. Mathematical models help us
achieve a better understanding of the dynamics of infections, which may

then allow us to efficiently implement control techniques.

Infections are continually changing, whether it is change due to drug
resistance or just mutation within the infectious agent. Our population
dynamics are also changing, which has a large effect on the transmission
and probability of infection — and so the mathematical models must also

change.

This thesis will look at a simple model for an infection, with six generic
examples given throughout the analysis. An integral equation technique is
used to model the epidemic and then a discrete mapping system is used to
model the dynamics of the population between successive epidemics. We
first need to describe the assumptions and terminology used when

modelling a disease.
1.1 The Model

Consider a population that can be split into three classes (in relation to an
epidemic): those who are susceptible to the infection, the infectious people,

and those who are removed from the epidemic (through immunity or

! Dietz & Heesterbeek (2002)



death), i.e. no one member of the population may be infected twice. In the

following analysis, we assume that the total population is constant.

I(t)

v

S(t)

R(t)

Figure 1.1 SIR Model - the population is divided into three compartments in
relation to the infection: susceptibles (S), infectives (/)and removed (R).

The simplest model is depicted in Figure 1.1. The three compartments can

represent population density or population size — as the total population

size is assumed to be constant it makes no difference. Susceptibles

becomes infected at a rate A resulting from contact with infectives. Contact

here is very loosely defined, as the amount of contact needed to become

infected will be depend on the infection being modelled. Infectives then

become part of the removed compartment at a constant rate y. As the

population size is constant, we know that the change in the population will

be zero, .i.e.

dS dI dr
—+—+—=0
de dr dt

The differential equations to describe this model are

ds SI
*® oy
a_
dr
R
dr

SI
I
ﬁxN Y

=7f

.
.

(L.1)

(1.2)



Where y is the rate at which susceptibles contact other members of the
population and f is the probability of a susceptible being infected given
contact with an infected member of the population. We have assumed that
the population size is constant, that is: §(¢)+7(r)+R(1)=N, so it is easy to

see that one of the above equations is redundant.

The rate 4 is the force of the infection, that is, the rate that susceptibles

become infected’. We have

A=ﬁz§ (13)

We can solve equations (1.2) to find a relation between the susceptibles and

the infectives in the population®.

A differential equations approach has been used for numerous
mathematical models, and there is a large amount of information available
for the analysis of such systems. However, with constant contact
parameters, the time spent in each compartment is exponentially distributed
among the members of the population — this does not fit actual results. So
we turn to a slightly different way of constructing a model with the use of

integral equations.

Using integral equations to model an infection is more intuitive than a
differential equations approach, and will match the actual data more

closely. However, the down side is, there is not a lot of information

2 Anderson & May (1991)
3 See Roberts & Heesterbeek (2000).



published relating to the analysis of such systems. This thesis is based on
the integral equation approach that will now be defined".

1.2 Probability of Infection

The probability of a susceptible being infected depends on their contact
with an infective and the probability of infection given this contact, which
depends on the time since the infective was itself infected. If we let p(t) be

the probability of contact and infection, and #(z) be the contact rate with

an infective, where 7 is the time since the infective was initially infected,

we let

A(7)=p(7)z(7) (1.4)

So the function A(7) represents the probability of contact and infection

with an infective at infection time 7 (the time since infection took place).

Throughout the following work, six different functions A(r) will be used to

illustrate the model, wherez >0.

1.2.1 Distribution 1

0, 7<T,
A(7)=4a, T,<T<T,
0 7>T,

“Please refer to Diekmann & Heesterbeek (2000) for further elaboration on the integral equation
approach.




When 7 is less than some specified time T or greater than a second
specified time T there is no chance of a susceptible being infected when
contacting an infective. When 7 lies between the two specified times, there
is a constant probability of infection when a susceptible comes in contact

with an infective. The period between time zero and T) can be seen as a

latency period in the infection.

1.2.2 Distribution 2

a, 05zsT
0, r7>T,

A(r):{

This is similar to distribution one, but now there is a constant probability of
contact and infection with an infective from time zero to time 7). At any

other time there is no chance of infection.

1.2.3 Distribution 3
A(7)=ae™, 720

Where a and ¢ are positive constants. For this distribution, the probability
of contact and infection decreases in a negative exponential in the time
since infection. Note that this is the same as for the differential equations

model, as a member of the population will spend an exponential amount of

time within a compartment.

1.2.4 Distribution 4

A(r)=are™, 720



Again, a and c are positive constants. Here, the probability of contact and

infection has a similar shape to the gamma distribution (see Figure 1.2 for
further clarification).

1.2.5 Distribution 5
A(7)=ae™ " 720

As expected, a, ¢ and T are positive constants. The probability of contact
and infection takes the shape of a shifted normal distribution curve, but we

further truncate this, as we are dealing only on a positive time scale.

1.2.6 Distribution 6

(r-T), T,<s7<T,

’ T4l
A(r)={" g

(7-T.), L<7<T,

otherwise

The probability of contact and infection takes the form of a trapezium.
From 7=0 to 7, there is a latency period, and the from 7; to 7, the

probability of contact and infection increases linearly, to reach its
maximum at 7,. This maximum lasts until 7, when it starts to decrease
linearly to zero at T, . This is one of the most flexible distributions and was

recently used by Roberts’ to model SARS.

? Refer Roberts (in prep.)



Example plots are given below to further elaborate on the above

explanations.
Distribution 1 Distribution 2 ) Distribution 3
a
a
0 0 0
0T T2 o T 1]
Distribution 4 Distribution 5 Distribution &
‘fF“ a
2
* |
0 0 0
0 0 0 T1iT2 T3 T4 ‘

Figure 1.2 Contact Rate/Probability Distributions, time on the x axis

1.3 The Basic Reproduction Ratio

To see if an infection will persist within a population, we consider the basic

reproduction ratio, represented by R;, of the epidemic. We define the basic

reproduction ratio as follows:

The basic reproduction ratio is the number of secondary cases
that arise from a primary case in a susceptible population
(Diekmann & Heesterbeek 2000).

So the critical value of R, is one. If R, <1 then the epidemic will not persist
in the population, and the number of infectives will decrease. If R, >1then

the epidemic will continue through the population, and the number of



infectives will increase while the number of susceptibles will decrease.
We can see that R, will depend on the population size, the contact rates and

the probability of infection, hence:

R,=5(0) [ A(r)dz (1.5)
1.4 The Incidence of Infection.

The incidence of infection i(r) is the number of new cases per unit time. So

we see that it will be equal to the change in the susceptible population (as

we have ignored changes in the susceptible population due to other causes).

At time ¢, the number of new cases of the infection depends on the contacts

between susceptibles and infectives — those who were infected themselves

before time ¢. So we have:

i(1)=isd (1) +S (1) [, A(e)i(r-7)dr (1.6)

where the i,6() accounts for the initial introduction of the infection into

the population®.

We may also rewrite this in terms of the change in the susceptible

population:

ds(r)

B0 s0)-s00 [ 40 2 e

(1.7)

5(:) is the Dirac's delta function



1.5 The Initial Growth Rate

The number of infectives can be modelled by an exponential during the

initial phases of infection. So we let
i(t) = ke" (1.8)

for some positive constant r, which we call the initial growth rate of the
infection. As we said above, the change in infectives is proportional to the

incidence of infection. We can then state:
ke" =igd(t)+S(1)k [~ A(r)edr (1.9)
As we are examining the initial growth of the infection, we do not need to

include the initial introduction of the infection into our population; hence

we can omit the i,6(¢) term. We also set the size of the susceptible

population equal to its initial value’, §(r)=5(0). So we solve:
1=5(0) [~ A(r)e"dz (1.10)

It is shown in Diekmann and Heesterbeek (2000), that there is a unique real
r that solves equation (1.10). Note that equation (1.10) is similar to our
equation for the basic reproduction ratio (equation (1.5)) The correlation
between the two lead to two important facts: r>0 if and only if the basic

reproduction ratio is greater than one, and r <0 if and only if the basic

" Note: S(t) > i,, and so we let S('E]+ ) = S(O'). i, will usually be assumed to be equal to one, i.e.

there will be one initial case to introduce the infection into the susceptible population.
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reproduction ratio is less than one. That is, we only have initial growth of

the infection if we have an epidemic.
1.6 Overview

The purpose of the following exercises is to determine R, (the basic
reproduction ratio), r (the initial growth rate) and the final size equation of
an epidemic, given a function A(r) that characterises the epidemic. The
susceptible population will first be viewed as one class, and will then be
split into two classes with intra-class mixing introduced. All the

calculations will be based on the following relation for the incidence of the

epidemic
i(1)=id(1)+S (1) [ A(e)i(r-7)de (1.11)
for our six functions A(z) and for constant and non-constant S(r).

Two methods will be used to calculate the final size of the infection. For a
small epidemic, R, <1, we assume that S() is constant and equal to the
initial susceptible population (as there will be no major epidemic, so the
change in the population due to the infection is slower that any other
change in the population). For a larger epidemic, R,>1, we can not assume
that the susceptible population is constant, so we use a direct method

applied to equation (1.7) to calculate the final size of the epidemic.

Using the methods outlines above, we then construct a repeated epidemic
process, where we consider epidemics on a discrete generation basis.
Initially we assume that the entire population is susceptible, and we let an

epidemic occur. We then calculate the final number of susceptibles and let
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a portion of them continue on to the next epidemic generation. New
susceptibles are introduced into the population to maintain a constant
population. We then let another epidemic occur, calculate the final number
of susceptibles from this second generation and let a proportion continue
and introduce new members into the population. This is repeated, with
either an epidemic occurring each generation or the infection not persisting
within the population. Numerical calculations are given for this, and then a

full analytic proof into the nature of the solution is given.

We then repeat out analysis of the six functions A(7) when the population

is split into two subclasses. The basic reproduction ratio will be calculated
for four different mixing schemes between classes. The same methods can
be used as for the one dimensional case, with slight alterations to the

equations. The final size equations are calculated, and a brief introduction

into applying a repeated epidemic process is given.

MATLAB has been used to generate the numerical examples with this

thesis, and Maple was used for some of the analytical work.





