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Abstract 

This thesis is on mathematical modelling in epidemiology, exploring the 

generic characteristics of diseases in two different population structures. 

Integral equations are used, to model the epidemics in each generation ( of 

the epidemic). Difference equations are then used to model the change in 

the populations between epidemics. Initially, single dimension populations 

are modelled, where the entire population is considered to be one class. 

Then the population is split into two classes and a similar analysis is 

performed, with critical differences noted between the two structures. An 

analytical approach is taken, with numerical examples. 

The work in this thesis is not specific to one disease, the main focus is to 

develop a stepped process between generations of the epidemic and analyse 

the behaviour. 
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Chapter 1 Introduction. 

Since 1760, when Daniel Bernoulli developed a mathematical model of the 

impact of vaccination against smallpox1
, there has been an increasing 

demand for models of various infections. Mathematical models help us 

achieve a better understanding of the dynamics of infections, which may 

then allow us to efficiently implement control techniques. 

Infections are continually changing, whether it is change due to drug 

resistance or just mutation within the infectious agent. Our population 

dynamics are also changing, which has a large effect on the transmission 

and probability of infection - and so the mathematical models must also 

change. 

This thesis will look at a simple model for an infection, with six generic 

examples given throughout the analysis. An integral equation technique is 

used to model the epidemic and then a discrete mapping system is used to 

model the dynamics of the population between successive epidemics. We 

first need to describe the assumptions and terminology used when 

modelling a disease. 

1. 1 The Model 

Consider a population that can be split into three classes (in relation to an 

epidemic): those who are susceptible to the infection, the infectious people, 

and those who are removed from the epidemic (through immunity or 

1 Dietz & Heesterbeek (2002) 



death), i.e. no one member of the population may be infected twice. In the 

following analysis, we assume that the total population is constant. 

I S(t)I ~ ·I J(t) 
__ 1 __ ,1 R(t) 

Figure 1.1 Sm Model - the population is divided into three compartments in 
relation to the infection: susceptibles (S), infectives (I)and removed (R). 

2 

The simplest model is depicted in Figure 1.1. The three compartments can 

represent population density or population size - as the total population 

size is assumed to be constant it makes no difference. Susceptibles 

becomes infected at a rate A resulting from contact with infectives. Contact 

here is very loosely defined, as the amount of contact needed to become 

infected will be depend on the infection being modelled. lnfectives then 

become part of the removed compartment at a constant rate y. As the 

population size is constant, we know that the change in the population will 

be zero, .i.e. 

dS di dR 
-+-+-=0 
dt dt dt 

The differential equations to describe this model are: 

dS SI 
-=-/3x-
dt N 
di SI -=/3x--rI 
dt N 
dR -=yI 
dt 

(1.1) 

(1.2) 



Where x is the rate at which susceptibles contact other members of the 

population and /3 is the probability of a susceptible being infected given 

contact with an infected member of the population. We have assumed that 

the population size is constant, that is: s ( t) + I ( t) + R ( t) = N , so it is easy to 

see that one of the above equations is redundant. 

The rate ,l is the force of the infection, that is, the rate that susceptibles 

become infected2
• We have 

I l=/Jx­
N 

(1.3) 

3 

We can solve equations (1.2) to find a relation between the susceptibles and 

the infectives in the population3
. 

A differential equations approach has been used for numerous 

mathematical models, and there is a large amount of information available 

for the analysis of such systems. However, with constant contact 

parameters, the time spent in each compartment is exponentially distributed 

among the members of the population - this does not fit actual results. So 

we turn to a slightly different way of constructing a model with the use of 

integral equations. 

Using integral equations to model an infection is more intuitive than a 

differential equations approach, and will match the actual data more 

closely. However, the down side is, there is not a lot of information 

2 Anderson & May (1991) 
3 See Roberts & Heesterbeek (2000). 



published relating to the analysis of such systems. This thesis is based on 

the integral equation approach that will now be defined4
• 

1.2 Probability of Infection 

4 

The probability of a susceptible being infected depends on their contact 

with an infective and the probability of infection given this contact, which 

depends on the time since the infective was itself infected. If we let p(r) be 

the probability of contact and infection, and x( i-) be the contact rate with 

an infective, where r is the time since the infective was initially infected, 

we let 

A(i-)= p(i-)z(i-) (1.4) 

So the function A ( i-) represents the probability of contact and infection 

with an infective at infection timer (the time since infection took place). 

Throughout the following work, six different functions A(i-) will be used to 

illustrate the model, where -r ~ O. 

1.2.1 Distribution 1 

{

o. 
A( i-) = ~· 

i- < r. 
:z;~i-~T2 
i- > r; 

4Please refer to Diekmann & Heesterbeek (2000) for further elaboration on the integral equation 

approach. 



When r is less than some specified time T1 or greater than a second 

specified time T2 there is no chance of a susceptible being infected when 

contacting an infective. When r lies between the two specified times, there 

is a constant probability of infection when a susceptible comes in contact 

with an infective. The period between time zero and T1 can be seen as a 

latency period in the infection. 

1.2.2 Distribution 2 

A(i-)={a, 
0, 

5 

This is similar to distribution one, but now there is a constant probability of 

contact and infection with an infective from time zero to time T1• At any 

other time there is no chance of infection. 

1.2.3 Distribution 3 

Where a and c are positive constants. For this distribution, the probability 

of contact and infection decreases in a negative exponential in the time 

since infection. Note that this is the same as for the differential equations 

model, as a member of the population will spend an exponential amount of 

time within a compartment. 

1.2.4 Distribution 4 



Again, a and c are positive constants. Here, the probability of contact and 

infection has a similar shape to the gamma distribution (see Figure 1.2 for 

further clarification). 

1.2.5 Distribution 5 

A( i-) = ae-c(r-T,)' , 'Z";?: 0 

6 

As expected, a, c and T1 are positive constants. The probability of contact 

and infection takes the shape of a shifted normal distribution curve, but we 

further truncate this, as we are dealing only on a positive time scale. 

1.2.6 Distribution 6 

_a_(i--T.) 7;:5-r:5T2 
T, -T, I ' 

2 I 

A( i-) = 
a, T2<-r<T3 

~ ( i- - T ) T3 :5 -r :5 T4 
T -T. 4 ' 4 3 
0, otherwise 

The probability of contact and infection takes the form of a trapezium. 

From i- = O to i; there is a latency period, and the from i; to T2 the 

probability of contact and infection increases linearly, to reach its 

maximum at r2 • This maximum lasts until i; when it starts to decrease 

linearly to zero at T4 • This is one of the most flexible distributions and was 

recently used by Roberts5 to model SARS. 

5 Refer Roberts (in prep.) 



Example plots are given below to further elaborate on the above 

explanations. 

DistrlbtAlon 1 Distrlbulion 2 Distribution 3 

0 0 0 
0 T1 T2 0 Tl 0 

Distribution 4 Distribution 5 Distribution 6 

I a 

Cl. 
)( 

~ 

0 0 00 0 0 Tl T2 TJ T4 

Figure 1.2 Contact Rate/Probability Distributions, time on the x axis 

1.3 The Basic Reproduction Ratio 

7 

To see if an infection will persist within a population, we consider the basic 

reproduction ratio, represented by R0 , of the epidemic. We define the basic 

reproduction ratio as follows: 

The basic reproduction ratio is the number of secondary cases 

that arise from a primary case in a susceptible population 

(Diekmann & Heesterbeek 2000). 

So the critical value of Ra is one. If Ra < 1 then the epidemic will not persist 

in the population, and the number of infectives will decrease. If Ra > 1 then 

the epidemic will continue through the population, and the number of 



8 

infectives will increase while the number of susceptibles will decrease. 

We can see that Ra will depend on the population size, the contact rates and 

the probability of infection, hence: 

(1.5) 

1.4 The Incidence of Infection. 

The incidence of infection i(t) is the number of new cases per unit time. So 

we see that it will be equal to the change in the susceptible population (as 

we have ignored changes in the susceptible population due to other causes). 

At time t, the number of new cases of the infection depends on the contacts 

between susceptibles and infectives - those who were infected themselves 

before time t. So we have: 

(1.6) 

where the i0t5 ( t) accounts for the initial introduction of the infection into 

the population6
• 

We may also rewrite this in terms of the change in the susceptible 

population: 

dS(t) I' dS(t-i-) 
---=i0t5(t)-S (t) A( i-)----"-----"-di-

dt O dt 

6 t5 ( t) is the Dirac 's delta function 

(1.7) 



1.5 The Initial Growth Rate 

The number of infectives can be modelled by an exponential during the 

initial phases of infection. So we let 

9 

i ( t) ""ke" (1.8) 

for some positive constant r, which we call the initial growth rate of the 

infection. As we said above, the change in infectives is proportional to the 

incidence of infection. We can then state: 

(1.9) 

As we are examining the initial growth of the infection, we do not need to 

include the initial introduction of the infection into our population; hence 

we can omit the i08(t) term. We also set the size of the susceptible 

population equal to its initial value 7, S ( t) = S ( O). So we solve: 

(1.10) 

It is shown in Diekmann and Heesterbeek (2000), that there is a unique real 

r that solves equation (1.10). Note that equation (1.10) is similar to our 

equation for the basic reproduction ratio ( equation ( 1.5)) The correlation 

between the two lead to two important facts: r > O if and only if the basic 

reproduction ratio is greater than one, and r < O if and only if the basic 

7 Note: S ( t) » i0 , and so we let S ( o+) = S ( o-) . i0 will usually be assumed to be equal to one, i.e. 

there will be one initial case to introduce the infection into the susceptible population. 



reproduction ratio is less than one. That is, we only have initial growth of 

the infection if we have an epidemic. 

1. 6 Overview 

10 

The purpose of the following exercises is to detennine Ro (the basic 

reproduction ratio), r (the initial growth rate) and the final size equation of 

an epidemic, given a function A(-r) that characterises the epidemic. The 

susceptible population will first be viewed as one class, and will then be 

split into two classes with intra-class mixing introduced. All the 

calculations will be based on the following relation for the incidence of the 

epidemic 

(1.11) 

for our six functions A( -r) and for constant and non-constant s (t) . 

Two methods will be used to calculate the final size of the infection. For a 

small epidemic, Ro< 1, we assume that S(t) is constant and equal to the 

initial susceptible population (as there will be no major epidemic, so the 

change in the population due to the infection is slower that any other 

change in the population). For a larger epidemic, Ra > 1 , we can not assume 

that the susceptible population is constant, so we use a direct method 

applied to equation ( 1. 7) to calculate the final size of the epidemic. 

Using the methods outlines above, we then construct a repeated epidemic 

process, where we consider epidemics on a discrete generation basis. 

Initially we assume that the entire population is susceptible, and we let an 

epidemic occur. We then calculate the final number of susceptibles and let 



11 

a portion of them continue on to the next epidemic generation. New 

susceptibles are introduced into the population to maintain a constant 

population. We then let another epidemic occur, calculate the final number 

of susceptibles from this second generation and let a proportion continue 

and introduce new members into the population. This is repeated, with 

either an epidemic occurring each generation or the infection not persisting 

within the population. Numerical calculations are given for this, and then a 

full analytic proof into the nature of the solution is given. 

We then repeat out analysis of the six functions A ( -c) when the population 

is split into two subclasses. The basic reproduction ratio will be calculated 

for four different mixing schemes between classes. The same methods can 

be used as for the one dimensional case, with slight alterations to the 

equations. The final size equations are calculated, and a brief introduction 

into applying a repeated epidemic process is given. 

MATLAB has been used to generate the numerical examples with this 

thesis, and Maple was used for some of the analytical work. 




