

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

PROPAGATION OF ACTINIDIA CHINENSIS (PLANCH.) BY STEM AND ROOT CUTTING

A Thesis Submitted in partial iulfilment of the requirements for the degree of Master in Horticultural Science at Massey University

SIM BOON LIANG

1979

80_01381

ABSTRACT

Basal wounding, bottom heat, light with IBA treatments were found to be beneficial for rooting of <u>Actinidia chinensis</u> (Planch.). IBA treatment was effective only when there was a high natural ability to initiate root in Summer and Spring.

Seasonal fluctuations in rooting ability was pronounced. This seasonal variation seems to be related to the levels of endogenous IAA, ABA and cofactor 2. No correlation between root initiation and bud activity or IAN level was established.

IAA seems to be the fundamental physiological promoter of adventitous root formation. IBA plays only a supporting role in promoting root formation, by protecting the endogenous IAA level in the cutting base.

Leaf tissue is an important factor for rooting to be successful. The role of leaf tissue is not just to produce auxin or synthesize nutrients but rather some unknown factor in the leaf can produce a synergistic interaction with auxin in root formation processes.

Root cuttings of Abbott variety were sequentially harvested and planted over a period from late Autumn (1.4.77) until mid Summer (8.1.78). Root cuttings of different thickness and length were compared to evaluate their effect on regeneration. The effect of various growth regulators was investigated too.

Root diameters of 0.5 - 1.5 cm. out performed that of the thinner or thicker ones. Shorter cuttings (5 cm) of equivalent total length were found to be more productive than a single long cutting (15cm). Strong polarity was observed with shoots only arising from the proximal end of the cutting.

Regenerative capacity was highest in late Autumn and Winter and lowest in Summer. This seasonal fluctuation can be altered by exogenous application of growth regulators. IBA suppressed shoot regeneration, whereas cytokinin and sucrose promoted it, while GA3 did not have any significant effect.

For commercial use, the practical and economic aspects of this techique require further investigation.

Glossary of Abbreviations

- IAA = indoleacetic acid
- IAN = indoleacetic nitrile
- IBA = indolebutyric acid
- ABA = abscisic acid
- $GA_3 =$ gibberellic acid
- GA = gibberellin
- BAP = benzylaminopurine
- DNA = deoxyribonucleic acid
- RNA = ribonucleic acid
- PPM = parts per million
- P = probability
- ¥ = 0.1%
- XX = 0.05%
- XXX = 0.001%

ACKNOWLEDGEMENTS

The author would like to thank Professor J.A. Veale, Mr. G.S. Lawes and Dr. D.J. Woolley for their guidance and assistance in their capacity as supervisors.

My sincere thanks to Mr. G. Vander Mespel of Horticultural Research Centre in Levin for supplying cutting materials.

I would like to express my gratitude to A. Watson and D. Anderson for their technical assistance.

$\underline{C} = \underline{O} = \underline{N} = \underline{T} = \underline{E} = \underline{N} = \underline{T} = \underline{S}$

Chapter	
1 Review of Literature	1
1.1 Introduction	1
1.2 Propagation of Stem Cuttings	1
1.2.1 Anatomical Development of Roots Cuttings	2
1.2.1.1 Mechanical hinderance	4
1.2.2 Environmental Factors Affecting Rooting Ability of Cutting	5
1.2.2.1 Seasonal Variation	5
1.2.2.2 Photoperiod	9
1.2.2.3 Other Light Effect	11
1.2.2.4 Physical Environment for Rooting	13
1.2.3 Physiological Aspects	15
1.2.3.1 Juvenility	15
1.2.3.2 The Effects of Leaves	17
1.2.3.3 The Effects of Buds	20
1.2.3.4 The Effects of Flowering Buds	22
1.2.4 Hormonal Basis of Rooting	23
1.2.4.1 Endogenous Auxins	24
1.2.4.2 Cytokinin	28
1.2.4.3 Gibberellins and Rooting	29
1.2.4.4 Abscisic Acid	35
1.2.4.5 Ethylene	37
1.2.5 Role of Cofactors	38
1.2.6 Nutrition	40
1.2.6.1 Carbohydrate	41
1.2.6.2 Nitrogen	43
1.2.6.3 Other Nutritions	44
1.2.7 Type of Wood Selected for Cuttings	45
1.3 Root Cuttings	46

.

Ch	apter			Page
2	Rati	onale	of the Present Work	49
3	Gene	ral M	aterials and Methods	50
	3.1	Plan	t Materials	50
	3.2	Coll Mate	ection and Preparation of Cutting rials	50
	3.3	Trea	tment and Planting of Cutting	50
	3	.3.1	Wounding and Rooting Condition	50
	3	.3.2	Indole Butyric Acid Treatment	51
	3	.3.3	Application of Indole-Acetic Acid	52
	3.4	Plas	tic Tent	52
	3.5	Samp Extr	ling of Material for Hormone action	53
	3.6	Extr Anal	action of Plant Material for Hormone ysis	53
	3	.6.1	Initial Extraction for Auxin and Inhibitors	53
	3	.6.2	Extraction of Plant Material for Rooting Cofactors	57
	3.7	Chro: Anal;	matography of Extracts for Hormone ysis	57
	3	.7.1	Paper Chromatography of Auxin and Inhibitors	57
	3	.7.2	Paper Chromatography of Rooting Cofactors	58
	3.8 Bioassay Procedures		58	
	3	.8.1	Triticum Coleoptile Bioassay	58
	3	.8.2	Avena Coleoptile Bioassay	59
	3	.8.3	Mung Bean Root Initiation Bioassay	64
	3.9	Root	Cuttings	66

•

Chapter

,

4	Prop Cutt	agation of <u>Actinidia</u> <u>chinensis</u> by Stem ings	67
	4.1	The Effect of Wounding on Rooting Actinidia chinensis	67
	4.2	Varietal and Sexual Difference in the Propagation of <u>Actinidia</u> chinensis	70
	4.3	Propagation of Leafy Cultinger under Polythene-Tent	72
	4.4	The Effect of Exogenous IAA on Rooting of Actinidia chinensis	
	4	 .4.1 The Influence of IAA and Basal Temperature on the Rooting of <u>Actinidia chinessia</u> .4.2 The Effect of Various Concentration 	76
		of IBA on Root Regeneration of <u>Actinidia</u> chinensis	79
	4.5	Seasonal Changes in Root Initiation of <u>Actinidia</u> <u>chinensis</u>	89
	4.6	The Relationship Between Bud Dormancy and Root Initiation	95
	4.7	Seasonal Changes of Endogenous Growth Regulators of <u>Actinidia</u> chinensis	101
	4.8	Examination of the Role of IAA and IBA in Root Formation of Bruno Cuttings	113
	4.9	Effects of Leaves	130
5	Propagating Actinidia chinensis by Root Cutting		
	5.1	Introduction	137
	5.2	The Shoot Regeneration Potential of Roots of Different Diameter	137
	5.3	Root Length and Polarity	140
	5.4	Seasonal Effects	145
	5.5	Applied Growth Regulators	147

Page

-

Ch	Chapter	
6	General Discussion and Conclusion	152
	6.1 Stem Cuttings	152
	6.2 Root Cuttings	161
7	Appendices	165
	Appendix 1 Standard Buffer Solution	165
	Appendix 2 ANOVA for Stem Cutting Experiments	166
	Appendix 3 ANOVA for Root Cutting Experiments	174
8	Bibliography	177

LIST_OF_FIGURES_AND_TABLES

		Page
Fig. 3.6.1	Summary of hormone extraction procedure	56
Fig. 3.8.1	Standard curve for wheat coleoptile response to ABA	61
Fig. 3.8.2	Standard curve for oat coleoptile response to IAA	62
Fig. 3.8.3	Standard curve for oat coleoptile response to IAN	63
Table 4.1.1	The percentage of rooting, and callusing of Hayward cuttings treated with IBA and wounding	68
Table 4.2.1	The percentage rooting of Hayward, Abbott and Matua propagated under standard conditions	71
Table 4.3.1	Results for leafy Hayward cutting propagated under mist or polythene tent	74
Table 4.4.1.1, 4.4.1.2, and 4.4.1.3	Results showing the effect of bottom heat and IBA on Hayward stem cutting	80
Table 4.4.2.1	Tables showing the effect of different IBA concentration on the rooting of Abbott stem cuttings	81
Fig. 4.4.2.1	Percentage rooting of Abbott cutting	82
Fig. 4.4.2.2	The effect of various concentration of IAA on root regeneration of Actinidia chinensis	83
Table 4.5.1	Percentage rooting on successive harvest date	90
Fig. 4.5.1	Seasonal fluctuation in the rooting ability of Hayward and Abbott stem cuttings	91
Table 4.6.2.1	Percentage bud break and days to 50% bud break of cuttings of Abbott variety	96
Fig. 4.6.2.1	Seasonal bud activities	97

Table 4.6.3.1	Percentage rooting of bud and budless Abbott cuttings treated with or without IBA at various harvests	99
Fig. 4.7.1	Seasonal changes in an acidic growth promoter, similar to IAA	104
Fig. 4.7.2	Seasonal changes of a neutral growth promoter, similar to IAN	105
Fig. 4.7.3	Seasonal changes of an acidic growth inhibitor, similar to ABA	106
Fig. 4.7.4	Seasonal changes of rooting promoters from Hayward cuttings as determined by the Mung Bean Bioassay	107
Table 4.8.1	Treatment for Bruno cuttings	114
Table 4.8.2	Precentage rooting of Bruno cuttings treated with IAA, IBA and centrifugation singly or in combination	115
Fig. 4.8.1	Histograms of IAA-like growth promoters from stem tissue and centrifugate of Bruno	117
Fig. 4.8.2	Histograms of IAN extracted from stem tissue and centrifugate of Bruno	119
Fig. 4.8.3	Histograms of ABA extracted from stem tissue and centrifugate of Bruno	121
Fig. 4.8.4	Rooting cofactors extracted from stem tissues of Bruno	123
Table 4.8.3	Extractable Level of endogenous growth regulators from the excised bases, cuttings and centrifugate Bruno after centrifugation	125
Table 4.9.1	Percentage rooting of Abbott leafy and leafless cuttings in response to IAA	131
Table 5.2.1	Table showing the percentage shoot regeneration and number of shoot per root cutting	138

Page

.

Fig. 5.2.1	Photos showing the shoot regeneration capacity of roots of different diameter and length	141
Fig. 5.2.2	Photo showing the shoot regeneration capacity of roots with different diameter	142
Fig. 5.2.3	Close-up photo showing location of shoot emergence from cortex of cut end.	143
Pable 5.3.2	Shoot regeneration capacity of Abbott root cuttings taken on 11/7/77	144
Table 5.3.3	Shoot regeneration capacity of Abbott root cuttings taken on 31/9/77	144
Fig. 5.4.1	Percentage of shoot regeneration of Abbott root cuttings at various harvesting dates	146
Table 5.4.1	Percentage of shoot regeneration in Abbott root cuttings at various harvesting dates	147
Table 5.5.1	Treatments of various hormone on Abbott root cuttings	148
Table 5.5.2	Treatments of BAP and sucrose on Abbott root $\texttt{cuttin}_{\ell}\texttt{s}$	148
Table 5.5.3	Effect of IBA (150 mgl ⁻¹) treatment on Abbott root cuttings	149
Table 5.5.4	Effect of GA (50 mgl^{-1}) treatment on Abbott root cuttings	149
Tabel 5.5.5	Effect of BAP (75 m_{Bl}^{-1}) treatment on Abbott root cuttings	149
Table 5.5.6	Effect of BAP and sucrose on shoot regeneration	150