Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterization and Flow of Food and Mineral Powders

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering

at Massey University, Manawatū, New Zealand.

Horng Yuan Saw

2016

Abstract

Powders are important commodities across different industries, such as the food and pharmaceutical industries. In these industries, powders are usually made, mixed, milled, packaged, and stored; these operations require the powders to move and flow under desired conditions and different stress levels. Failure to flow will cause hindrances to production; therefore knowledge of powder flow or flowability is important. There is a constant demand for accurate, reliable, and robust measurement and characterization methods for powder flowability.

Powders behave differently under varying conditions; the behaviour of a powder is influenced by particle size distribution, and powder handling and processing conditions. There is to date no one "standard" method to characterize powder flowability; it is common to use a variety of methods and devices to measure flow properties and provide insight into the behaviour and flow characteristics of powders under different conditions.

The flow properties of model food and mineral powders were measured and assessed by shear testing, compression via tapping, fluidization, and powder tumbling. Shear testing was done with an annular shear cell following Jenike (1964) and Berry, Bradley and McGregor (2014). Compression via tapping was performed according to a procedure in the dairy industry (Niro, 1978) and the European Pharmacopoeia (Schüssele & Bauer-Brandl, 2003). Fluidization was used to measure powder bed expansion and bed collapse following the powder classification framework provided by Geldart and co-workers (Geldart, 1973; Geldart, Harnby, & Wong, 1984; Geldart & Wong, 1984, 1985). Powder tumbling was performed in a novel *Gravitational Displacement Rheometer*, GDR, which measured the motion and avalanche activity of powders that moved under their own weight when rotated in a cylinder at different drum speed levels.

The flow data from each characterization method were evaluated individually with regards to particle size distribution and then assessed collectively. The findings presented and discussed include the i) demonstration of the dominant influence of surface-volume mean particle diameter on powder flow properties, ii) characterization of flowability based on Jenike's arbitrary flow divisions, iii) development of new correlations for the estimation of powder cohesion and bulk density at low preconsolidation stresses, iv) demonstration of hopper outlet diameter as a measure of flowability, v) demonstration of the limited utility of Hausner ratio as a flowability index, vi) substantiation of von Neumann ratio as a sensitive and useful indicator for identifying the onset of bubbling in fluidized beds using bed pressure fluctuation data, and vii) demonstration of the utility of standard deviation of the GDR load cell signal as an indicator of powder flowability; they can be used to assist and facilitate the development of new techniques and solutions relevant to the handling and processing of powders especially in the food and pharmaceutical industries.

Acknowledgement

I thank and praise my Lord and Saviour Jesus Christ for making everything possible.

My heartfelt acknowledgment and gratitude go to the people listed below; they have made various contributions to the completion of this Ph.D. thesis:

Ruth Saw, my beloved wife, soul mate, and best friend, my beloved mother Madam Yoke Yee Hor, and sisters Pek Wan Saw and Pek En Saw.

Professor Clive E. Davies, Principal Supervisor, and Professor Anthony H. J. Paterson and Professor Jim R. Jones, Co-supervisors, School of Engineering and Advanced Technology, Massey University.

Ann-Marie Jackson, John Edwards, Clive Bardell, Nick Look, Anthony Wade, and Kerry Griffiths, technical services staff of School of Engineering and Advanced Technology, Massey University.

Michele Wagner, Linda Lowe, Glenda Rosoman, Gayle Leader, Trish O'Grady, and Dilantha Punchihewa, administrative staff of School of Engineering and Advanced Technology, Massey University.

Professor Paul J. Moughan, Professor Harjinder Singh, John Henley-King, Dr. Guillaume Brisson, Dr. Emile S. Webster, and Janiene Gilliland of Riddet Institute.

Professor Fernando J. Muzzio of Rutgers University, Associate Professor Tony Howes of the University of Queensland, Dr. Kalyana Pingali and Casey Kick of Western Michigan University, and Dr. Abraham S. Chawanji of Fonterra Research Centre.

Pastors Dale and Rachel Meacheam, Pastor Nick Ling, friends from Vision Church Palmerston North, and Pastor Lionel Smith.

Pastor Ezra Chin and friends from Emmanuel Church Kota Kinabalu, Malaysia.

Table of Content

			Page
	Abstr	act	i
	Ackno	owledgement	ii
	Table	of Content	iii
	List o	f Figures	ix
	List o	f Tables	XV
	Nome	nclature	xvi
	Chap	ter 1 – Introduction	1
1.1	Backg	ground	1
1.2	Thesis	s Structure	2
	Chap	ter 2 – Preparation of Model Powders and Characterization of	3
	Physic	cal Properties	
2.1	Introd	uction	3
2.2	Litera	ture Review	3
	2.2.1	Particle size distribution and mean particle diameter	3
	2.2.2	Fines fraction	5
	2.2.3	Particle shape	6
	2.2.4	Influence of particle size distribution, mean particle diameter, and fines	6
		fraction on powder behaviour	
	2.2.5	Summary of literature review	7
2.3	Aims		7
2.4	Mater	ials, Methods and Analysis	7
	2.4.1	Materials and preparation of model powders	7
	2.4.2	Measurement of particle size distribution, diameters d_{10} , d_{50} , d_{90} , and span of size distribution	8
	2.4.3	Determination of surface-volume mean particle diameters $d_{32,M}$, $d_{32,M}^*$,	9
		and $d_{32,8}$	
	2.4.4	Determination of fines fraction F_{10} , F_{20} , F_{30} , F_{38} , and F_{45}	9
	2.4.5	Examination of particle shape	9
2.5	Result	IS	9
	2.5.1	Particle size distribution, span of size distribution, diameters $d_{32.M}$, d^*_{32} ,	9
		and $d_{32,S}$, and fines fraction of model powders	
	2.5.2	Particle shape of model powders	12
	2.5.3	Relationships between d_{32}^* , span of particle size distribution, and fines	16

C	· ·	
trac	ction	
1100	001011	

2.6	Discus	ussion			
2.7	Conclusions		19		
	Chapt	er 3 – Pow	vder Shear Testing	20	
3.1	Introduction				
3.2	Literat	ure Reviev	N	20	
	3.2.1	Yield loc	sus, major consolidation and unconfined yield stresses, and	21	
		effective	angle of internal friction		
	3.2.2	Powder f	low function and numerical characterization of powder	24	
		flowabili	ty		
	3.2.3	Cohesion	1	26	
	3.2.4	Bulk den	sity under consolidation	27	
	3.2.5	Minimun	n width of hopper outlet for mass flow	30	
	3.2.6	Summary	y of literature review	32	
3.3	Aims			33	
3.4	Materials, Methods and Analysis				
	3.4.1	Materials	3	33	
	3.4.2	Measurer	ment of yield locus, powder flow function, effective angle of	33	
		internal f	riction and bulk density		
	3.4.3	Measurer	ment of kinematic angle of wall friction	34	
	3.4.4	Analysis		34	
		3.4.4.1	Powder flow function and Jenike's arbitrary powder flow	34	
			divisions		
		3.4.4.2	Cohesion	34	
		3.4.4.3	Bulk density under consolidation	36	
		3.4.4.4	Hopper outlet B	36	
3.5	Result	S		36	
	3.5.1	Yield locus			
	3.5.2	Powder flow function		37	
	3.5.3	Cohesion		38	
	3.5.4	Bulk density under consolidation		43	
	3.5.5	Hopper outlet <i>B</i>		50	
3.6	Discus	Discussion			
	3.6.1	3.6.1 Vield locus and powder flow function			
	3.6.2	Cohesion	and Equation 3.21	53	
	3.6.3	Consolid	ated bulk density, bulk density correlations, and Equation 3.28	55	

	3.6.4	Simultaneous use of Equations 3.21, 3.28, and 3.30	56
	3.6.5	Hopper outlet <i>B</i>	56
	3.6.6	Effects of room temperature and relative humidity	57
3.7	Concl	usions	58
	Chap	ter 4 – Powder Compression via Tapping	60
4.1	Introd	uction	60
4.2	Litera	ture Review	60
	4.2.1	Loose poured bulk density and tapped density	60
	4.2.2	Tapped density profiles, Hausner ratio, and powder compression correlations	62
	4.2.3	Hausner ratio in powder flow indication and general powder classifications	64
	4.2.4	Summary of literature review	67
4.3	Aims		67
4.4	Mater	ials, Methods and Analysis	68
	4.4.1	Materials	68
	4.4.2	Measurement of loose poured bulk density	68
	4.4.3	Measurement of tapped density	68
	4.4.4	Measurement of flow properties with an annular shear cell	69
	4.4.5	Analysis	69
4.5	Result	S	70
	4.5.1	Loose poured bulk density	70
	4.5.2	Tapped density and powder compression correlations	72
	4.5.3	Hausner ratio	76
4.6	Discus	ssion	80
	4.6.1	Loose poured bulk density and tapped density	80
	4.6.2	Fitting parameters a_t , b_t , $k_{t,M1}$ and $k_{t,M2}$	81
	4.6.3	Estimation of loose poured bulk density with Equation 4.1 and Equation	84
		4.2	
	4.6.4	Hausner ratio, cohesion, and the ratio of major consolidation stress and	86
		unconfined yield stress	
4.7	Concl	usions	90
	Chap	ter 5 – Gas-Fluidization	91
5.1	Introd	uction	91
5.2	Literature Review		

	5.2.1	Gas-fluid	lization phenomenon	91	
	5.2.2	Powder b	bed expansion	93	
		5.2.2.1	Geldart Group A powders	93	
		5.2.2.2	Geldart Group B powders	93	
		5.2.2.3	Geldart Group C powders	94	
		5.2.2.4	Geldart Group D powders	96	
		5.2.2.5	Geldart C/A, A/B, and B/D boundary powders	96	
	5.2.3	Pressure	fluctuations and transitions in fluidized beds	97	
	5.2.4	Powder b	bed collapse	98	
		5.2.4.1	Bed collapse curves for Geldart Groups of powders	98	
		5.2.4.2	Type of bed collapse system	99	
		5.2.4.3	Standardized collapse time	101	
	5.2.5	Fluidizat	ion, powder characterization and other flowability	102	
		character	ization methods		
	5.2.6	Summary	y of literature review	103	
5.3	Aims			103	
5.4	Materi	ials, Metho	ods and Analysis	104	
	5.4.1	Materials	5	104	
	5.4.2	Experime	ental setup	104	
	5.4.3	Measurer	ment of bed pressure drop, bed height, and onset of bubbling	105	
	5.4.4	Measurer	ment of bed collapse	105	
	5.4.5	Analysis		106	
		5.4.5.1	Transition velocities and regimes in fluidization	106	
		5.4.5.2	Bed collapse	106	
5.5	Results				
	5.5.1	Transitio	n velocities	107	
	5.5.2	Fluidization behaviour and pressure fluctuations			
	5.5.3	Bed collapse			
5.6	Discussion				
	5.6.1	Superfici	al velocities, transitions and pressure fluctuations in fluidized	118	
		beds			
	5.6.2	Powder b	bed collapse, standardized collapse time and cohesion	119	
	5.6.3	Geldart F	Powder Groups and Hausner ratio at 1,250 taps	119	
5.7	Conclu	usions		120	
	Chapt	ter 6 – Pov	vder Tumbling	121	
6.1	Introduction			121	

6.2	Literature Review		121			
	6.2.1	Flow regin	mes of powders in rotating drums	121		
	6.2.2	Character	izing powder flowability with a rotating disc	123		
	6.2.3	Modificat	tion of the rotating disc apparatus	123		
	6.2.4	6.2.4 Significant findings on powder flowability with rotating drum				
		apparatuses				
		6.2.4.1	Identification of flow regimes and regime transitions	124		
		6.2.4.2	Identification of behaviour of Geldart Powder Groups	125		
		6.2.4.3	Flow Index as indicator for cohesivity and flowability	125		
		6.2.4.4	Powder dilation as indicator for cohesivity and flowability	127		
	6.2.5	Summary	of literature review	128		
6.3	Aims			128		
6.4	Mater	als, Method	ds and Analysis	129		
	6.4.1	Materials		129		
	6.4.2	Experime	ntal setup	129		
	6.4.3	Setup and	l operation of GDR	130		
	6.4.4	Analysis		131		
6.5	Result	S		131		
	6.5.1	Effect of a	drum fill level on avalanche activity	131		
	6.5.2	Avalanch	e activity and Geldart Powder Classification	133		
	6.5.3	Avalanch	e activity and d^*_{32}	134		
6.6	Discus	sion		136		
	6.6.1	Avalanche activity and influence of drum fill level		136		
	6.6.2	Avalanch	e activity and Geldart Groups C, A, A/B and B powders	137		
	6.6.3	Avalanch	e activity, Flow Index and $1/d_{32}^*$	139		
	6.6.4	Avalanch	e activity and powder dilation	140		
6.7	Concl	usions		140		
	Chapt	er 7 – Sum	imary	142		
7.1	Chara	eterization		142		
7.2	Cohes	ion		142		
7.3	Bulk d	ensity		143		
7.4	Flowa	bility		143		
7.5	Comp	ressibility		143		
7.6	Fluidi	zation		144		
7.7	Tumbling			144		

Appendix 1.1	153
Annendix 2.1	156
	150
Appendix 2.2	157
Appendix 3.1	161
Appendix 3.2	163
Appendix 3.3	167
Appendix 3.4	168
Appendix 3.5	169
Appendix 3.6	170
Appendix 3.7	171
Appendix 3.8	172
Appendix 3.9	174
Appendix 4.1	176
Appendix 4.2	177
Appendix 4.3	178
Appendix 4.4	179
Appendix 4.5	181
Appendix 5.1	183
Appendix 5.2	185
Appendix 5.3	186
Appendix 5.4	187
Appendix 5.5	192
Appendix 6.1	198
Appendix 6.2	204

146

List of Figures

Figure	Caption	Page
2.1	An example of particle size distribution with real data; plot of volume	4
	percentage versus incremental mean particle diameter	
2.2	An example of particle size distribution with real data; plot of cumulative	4
	volume fraction versus incremental mean particle diameter	
2.3	Particle size distribution of milled lactose LP4; plot of volume percentage	10
	versus incremental mean particle diameter	
2.4	Particle size distribution of milled lactose LP4; plot of cumulative volume	10
	fraction versus incremental mean particle diameter	
2.5	Particle shape of milled lactose powder LP1	13
2.6	Particle shape of milled lactose powder LP4	13
2.7	Particle shape of milled lactose powder LM1	14
2.8	Particle shape of spray-dried lactose powder LT1	15
2.9	Particle shape of sand S1	15
2.10	Particle shape of refractory dust RD1	16
2.11	Plot of d_{32}^* versus span of particle size distribution	17
2.12	Plot of d^*_{32} versus F_{45}	17
2.13	Plot of $1/d_{32}^*$ versus fines fraction for milled lactose powders	17
2.14	Plot of d^*_{32} versus $d_{32,M}$	18
3.1	Plot of shear stress versus consolidation stress with a yield locus, two Mohr	21
	circles, and the effective yield locus	
3.2	Arching in the gravity flow of a powder from a hopper, adapted from	23
	Rhodes (1998)	
3.3	Examples of powder flow functions with real data and Jenike's criteria for	25
	powder flowability	
3.4	Determination of critical stress developed in an arch surface with powder	32
	flow function and hopper flow factor	
3.5	Plot of shear stress versus normal stress at a preconsolidation stress of 1.2	37
	kPa for milled lactose LP4, LM1, LM2, LP1, and LP3, sand S1, and	
	refractory dust RD1 with d^*_{32} ranging from ~23–223 µm	
3.6	Powder flow functions of 13 milled lactose powders and Jenike's arbitrary	38
	powder flow divisions	
3.7	Powder flow functions of spray-dried lactose LT1 and LT2, sand S1, S2 and	38
	S3, refractory dust RD1, RD2 and RD3, and Jenike's arbitrary powder flow	
	divisions	

3.8	Plot of C versus σ_{pre} ; milled lactose LP4 is very cohesive and LM7, LM8,	39
	LM1, and LM9 are <i>cohesive</i> at σ_{pre} =1.2 kPa	
3.9	Plot of C versus σ_{pre} ; milled lactose LM4, LP2, and LM2 are <i>easy flowing</i> at	39
	$\sigma_{\rm pre}$ =1.2 kPa	
3.10	Plot of C versus σ_{pre} ; milled lactose LM3, LM5, LP1, LM6, and LP3 are <i>free</i>	40
	flowing at $\sigma_{\rm pre}$ =1.2 kPa	
3.11	Plot of C versus σ_{pre} for spray-dried lactose LT1 and LT2, sand S1, S2 and	40
	S3, and refractory dust RD1, RD2 and RD3	
3.12	Plot of cohesion at zero preconsolidation stress, C_0 versus d_{32}^*	40
3.13	Plot of cohesion at zero preconsolidation stress, C_0 versus $ ho_0/(ho_{ m p}d*_{32})$	40
3.14	Plot of <i>C</i> versus $\rho_{\rm B}/(\rho_{\rm p}d^*_{32})$ for milled lactose powders	41
3.15	Plot of C versus $\rho_{\rm B}/(\rho_{\rm p}d^*_{32})$ for spray-dried lactose powders	41
3.16	Plot of <i>C</i> versus $\rho_{\rm B}/(\rho_{\rm p}d^*_{32})$ for sand	42
3.17	Plot of <i>C</i> versus $\rho_{\rm B}/(\rho_{\rm p}d^*_{32})$ for refractory dust	42
3.18	Plot of C versus $\rho_{\rm B}/(\rho_{\rm p}d_{32}^*)(\sigma_{\rm pre,min})^{0.3}$ for milled lactose powders; $\sigma_{\rm pre}$ is	43
	from 0.31–4.85 kPa	
3.19	Plot of C versus $\rho_{\rm B}/(\rho_{\rm p}d_{32}^*)(\sigma_{\rm pre,min})^{0.3}$ for spray-dried lactose powders;	43
	$\sigma_{\rm pre}$ is from 0.31–2.41 kPa	
3.20	Plot of C versus $\rho_{\rm B}/(\rho_{\rm p}d_{32}^*)(\sigma_{\rm pre,min})^{0.3}$ for sand; $\sigma_{\rm pre}$ is from 0.31–1.20	43
	kPa	
3.21	Plot of C versus $\rho_{\rm B}/(\rho_{\rm p}d_{32}^*)(\sigma_{\rm pre,min})^{0.3}$ for refractory dust; $\sigma_{\rm pre}$ is from	43
	0.31–2.41 kPa	
3.22	Plot of consolidated bulk density versus preconsolidation stress for powders	44
	RD1, LP4, S1, LM9, LM1, and LP1	
3.23	Plot of $(\rho_{\rm B}-\rho_0)/\rho_0$ versus log $\sigma_{\rm pre}$ for Equation 3.6	45
3.24	Plot of $\rho_{\rm B}\sigma_{\rm pre}/(\rho_{\rm B}-\rho_0)$ versus $\sigma_{\rm pre}$ for Equation 3.9	45
3.25	Plot of ln $[ln(\rho_B/\rho_0)]$ versus ln σ_{pre} for Equation 3.11	45
3.26	Plot of log ($\rho_{\rm B}/\rho_0$) versus log $\sigma_{\rm pre}$ for Equation 3.13	45
3.27	Plot of log ($\rho_{\rm B}$ – ρ_0) versus log $\sigma_{\rm pre}$ for Equation 3.15	46
3.28	Plot of $k_{s,M1}$ of Equation 3.6 versus $1/d_{32}^*$	46
3.29	Plot of $k_{s,M2}$ of Equation 3.6 versus $1/d_{32}^*$	46
3.30	Plot of a_s of Equation 3.8 versus $1/d^*_{32}$	47
3.31	Plot of k_{N1} of Equation 3.10 versus $1/d_{32}^*$	47
3.32	Plot of k_{J2} of Equation 3.12 versus $1/d_{32}^*$	47
3.33	Plot of k_{G1} of Equation 3.14 versus $1/d_{32}^*$	47
3.34	Plot of b_s of Equation 3.8 versus $1/d_{32}^*$	48
3.35	Plot of k_{N2} of Equation 3.10 versus $1/d*_{32}$	48

3.36	Plot of k_{J1} of Equation 3.12 versus $1/d_{32}^*$	48
3.37	Plot of k_{G2} of Equation 3.14 versus $1/d_{32}^*$	48
3.38	Plot of $k_{s,M1}$ and $k_{s,M2}$ of Equation 3.6 versus $1/d*_{32}$ for milled lactose	49
	powders	
3.39	Plot of ρ_0 versus $1/d^*_{32}$ for milled lactose powders	49
3.40	Plot of $(\rho *_B - \rho_B)/\rho_B$ versus ρ_B for milled lactose powders; $\rho *_B$ is estimated	50
	with Equation 3.28	
3.41	Plot of ρ_0 versus $1/d*_{32}$ for spray-dried lactose powders, sand, and refractory	50
	dust	
3.42	Plot of σ_y or σ_D versus σ_c for LP4	51
3.43	Plot of σ_y or σ_D versus σ_c for LM6	51
3.44	Plot of $(\rho *_B - \rho_B)/\rho_B$ versus ρ_B for milled lactose powders; $\rho *_B$ is estimated	52
	with Equation 3.29	
3.45	Plot of hopper outlet <i>B</i> versus $1/d_{32}^*$ for milled lactose powders	52
3.46	Plot of $(C^*-C)/C$ versus C for milled lactose powders; C^* is calculated with	53
	Equation 3.21 and measured $\rho_{\rm B}$ values	
3.47	Plot of C versus $1/d_{32}^*$ for milled lactose powders that are <i>easy flowing</i> and	54
	<i>free flowing</i> at σ_{pre} =1.2 kPa	
3.48	Plot of <i>B</i> versus σ_c/σ_y at $\sigma_{pre}=1.2$ kPa for milled lactose powders	57
4.1	Plot of loose poured bulk density measured by modified NZS3111 method	72
	versus $1/d_{32}^*$	
4.2	Tapped density profiles of powders LP4, LP3, S1, and RD1	73
4.3	Plot of tapped density at 1250 taps versus $1/d_{32}^*$	73
4.4	Plot of $m_{\text{tap}}N/(m_{\text{tap}}-m_0)$ versus N	74
4.5	Plot of $(m_{tap}-m_0)/m_0$ versus log N	74
4.6	Plot of parameter a_t versus d_{50}	75
4.7	Plot of parameter b_t versus d_{50}	75
4.8	Plot of parameter a_t versus $1/d_{32}^*$	76
4.9	Plot of parameter b_t versus $1/d_{32}^*$	76
4.10	Plot of parameter $k_{t,M1}$ versus $1/d^*_{32}$	76
4.11	Plot of parameter $k_{t,M2}$ versus $1/d*_{32}$	76
4.12	Plot of Hausner ratio at 1250 taps versus $1/d^*_{32}$	77
4.13	Plot of cohesion at $\sigma_{\rm pre}$ =1.20 kPa versus Hausner ratio at 1250 taps	78
4.14	Plot of parameter k_{C1} versus log σ_{pre}	79
4.15	Plot of parameter k_{C2} versus log σ_{pre}	79
4.16	Ratio σ_c/σ_y at $\sigma_{pre}=1.20$ kPa versus Hausner ratio at 1250 taps	79
4.17	Plot of parameter $k_{\rm F1}$ versus $\sigma_{\rm pre}^2$	80

4.18	Plot of parameter $k_{\rm F2}$ versus $\sigma_{\rm pre}$	80
4.19	Plot of a_t versus 1–(1/ $H_{R,1250}$)	82
4.20	Plot of a_t versus a_s of Equation 3.8	82
4.21	Plot of b_t versus b_s of Equation 3.8	83
4.22	Plot of $k_{t,M1}$ versus $k_{s,M1}$ of Equation 3.6	84
4.23	Plot of $k_{t,M2}$ versus $k_{s,M2}$ of Equation 3.6	84
4.24	Plot of $(\rho^{*}_{0,1} - \rho_{0,mNZS3111}) / \rho_{0,mNZS3111}$ versus $\rho_{0,mNZS3111}$	85
4.25	Plot of $(\rho^{*}_{0,2}-\rho_{0,mNZS3111})/\rho_{0,mNZS3111}$ versus $\rho_{0,mNZS3111}$	85
4.26	Plot of $(\rho *_{0,3} - \rho_{0,mNZS3111}) / \rho_{0,mNZS3111}$ versus $\rho_{0,mNZS3111}$	85
4.27	Plot of $(H_{R,1250}^*-H_{R,1250})/H_{R,1250}$ versus $H_{R,1250}$	86
4.28	Plot of $(C^*-C)/C$ versus C for lactose LP4 that is very cohesive at $\sigma_{pre}=1.2$	87
	kPa	
4.29	Plot of $(C^*-C)/C$ versus C for powders that are <i>cohesive</i> at $\sigma_{pre}=1.2$ kPa	87
4.30	Plot of $(C^*-C)/C$ versus C for powders that are <i>easy flowing</i> at $\sigma_{pre}=1.2$ kPa	88
4.31	Plot of $(C^*-C)/C$ versus C for powders that are <i>free flowing</i> at $\sigma_{pre}=1.2$ kPa	88
4.32	Plot of $[(\sigma^*_c/\sigma^*_y) - (\sigma_c/\sigma_y)]/(\sigma_c/\sigma_y)$ versus σ_c/σ_y for lactose LP4 that is very	88
	<i>cohesive</i> at $\sigma_{\rm pre}$ =1.2 kPa	
4.33	Plot of $[(\sigma^*_c/\sigma^*_y) - (\sigma_c/\sigma_y)]/(\sigma_c/\sigma_y)$ versus σ_c/σ_y for powders that are <i>cohesive</i>	88
	at $\sigma_{\rm pre}$ =1.2 kPa	
4.34	Plot of $[(\sigma^*_c/\sigma^*_y) - (\sigma_c/\sigma_y)]/(\sigma_c/\sigma_y)$ versus σ_c/σ_y for powders that are <i>easy</i>	89
	flowing at $\sigma_{\rm pre}$ =1.2 kPa	
4.35	Plot of $[(\sigma^*_c/\sigma^*_y) - (\sigma_c/\sigma_y)]/(\sigma_c/\sigma_y)$ versus σ_c/σ_y for powders that are <i>free</i>	89
	flowing at $\sigma_{\rm pre}$ =1.2 kPa	
5.1	Three typical plots of bed pressure drop versus superficial gas velocity in the	92
	fluidization of powders, adapted from Richardson (1971)	
5.2	Powder classification diagram for fluidization by air under ambient	93
	conditions (Geldart, 1973)	
5.3	Bed collapse curves for Geldart (a) Group B, (b) Group A, and (c) Group C	99
	powders; adapted from Tung and Kwauk (1982) and Geldart and Wong	
	(1985)	
5.4	Schematic diagram of fluidized bed setup (not to scale)	104
5.5	Bed pressure fluctuations for lactose LP2 at $U_{\rm mf}$, $U_{\rm mb,v}$, and $U_{\rm bv}$ for	110
	increasing gas flow	
5.6	Plot of normalized bed parameters versus normalized superficial velocity,	111
	$U/U_{\rm mf}$, for lactose LP2 and increasing U	
5.7	Plot of normalized bed parameters versus normalized superficial velocity,	111
	$U/U_{\rm mf}$, for lactose LP2 and decreasing U	

5.8	Plots of σ and T^{-1} versus U for lactose LP2 and increasing U	112	
5.9	Plots of σ and T^{-1} versus U for lactose LP2 and decreasing U	112	
5.10	Plots of σ and T^{-1} versus U for lactose LP3 and increasing U		
5.11	Plots of σ and T^{-1} versus U for lactose LP3 and decreasing U	113	
5.12	Plot of normalized σ versus $U/U_{\rm mb,v}$ for increasing U	114	
5.13	Plot of normalized σ versus $U/U_{\rm mb,v}$ for decreasing U	115	
5.14	Plot of normalized T^{-1} versus $U/U_{mb,v}$ for increasing U	115	
5.15	Plot of normalized T^{-1} versus $U/U_{mb,v}$ for decreasing U	116	
5.16	Bed collapse profiles of refractory dust RD2 measured with single-drainage	117	
	and double-drainage systems and at initial superficial velocity of $1.5U_{\rm mb,v}$,		
	$2U_{\rm mb,v}$, and $3U_{\rm mb,v}$		
5.17	Plot of normalized bed height versus time for powders RD2, LM2, S2, LP2,	117	
	LT2, LM3, LM6, and LP3		
5.18	Plot of normalized bed height versus time for powders S3, LT1, S1, and	117	
	RD1		
5.19	Plot of t_c/H_{mf} against d^*_{32}	118	
5.20	Plot of t_c/H_{mf} against C_0	118	
6.1	Flow characteristics of fine and coarse powders in rotating drums by Huang	122	
	et al. (2010); used with permission (see Appendix 6.1 for permission)		
6.2	A photo of the Gravitational Displacement Rheometer	130	
6.3	Plot of σ_{ws} against drum speed for lactose LP4 at 20–50% fill level	132	
6.4	Plot of σ_{ws} against drum speed for sand S1 at 20–50% fill level	132	
6.5	Plot of σ_{ws} against drum speed for refractory dust RD1 at 20–50% fill level	132	
6.6	Plot of σ_{ws} against drum speed for lactose LM1 at 20–50% fill level	132	
6.7	Plot of σ_{ws} against drum speed for lactose LP1 at 10–50% fill level	133	
6.8	Plot of $\sigma_{\rm ws}$ against drum speed for glass beads B8 at 20–50% fill level	133	
6.9	Plot of σ_{ws} against drum speed for Geldart Group A sand S1, refractory dust	134	
	RD1, and lactose LM1 at 50% fill level		
6.10	Plot of σ_{ws} against drum speed for Geldart Group C lactose LP4, Group A/B	134	
	lactose LP1, and Group B glass beads B8 at 50% fill level		
6.11	Plot of σ_{ws} at 5 RPM and 50% fill level against $1/d_{32}^*$	135	
6.12	Plot of σ_{ws} at 10 RPM and 50% fill level against $1/d_{32}^*$	135	
6.13	Plot of σ_{ws} at 15 RPM and 50% fill level against $1/d_{32}^*$	135	
6.14	Plot of σ_{ws} at 20 RPM and 50% fill level against $1/d_{32}^*$		
6.15	Plot of σ_{ws} at 25 RPM and 50% fill level against $1/d*_{32}$	136	
6.16	Plot of $\sigma_{\rm ws}$ at 30 RPM and 50% fill level against $1/d_{32}^*$	136	
6.17	Tumbling bed profiles for Geldart Group A refractory dust RD1, sand S1	138	

and milled lactose LM1

6.18	Tumbling bed profiles for Geldart Group C milled lactose LP4; there are	138
	three random shots at each drum speed	
6.19	Tumbling bed profiles for Geldart Group A/B milled lactose LP1 and Group	139
	B glass beads B8	
6.20	Plot of normalized bed height against time; bed collapse profiles for Geldart	139
	Group A sand S1 and refractory dust RD1	
6.21	Plot of Flow Index, Equation 6.1, against $1/d_{32}^*$	140

List of Tables

Table	Caption	Page
2.1	Diameters d_{10} , d_{50} , d_{90} , $d_{32.M}$, d^*_{32} , $d_{32,S}$, and span $(d_{90}-d_{10})/d_{50}$ for milled and	11
	spray-dried lactose powders, sand, and refractory dust	
2.2	Fines fraction F_{10} , F_{20} , F_{30} , F_{38} , and F_{45} for milled and spray-dried lactose	12
	powders, sand, and refractory dust	
3.1	Jenike's limiting flow function values and arbitrary powder flow divisions	25
	(Jenike, 1964)	
3.2	Values of δ_{e} , Φ_{w} , θ_{p} , σ_{crit} , $\rho^{*}_{B,crit}$, $H(\theta_{p})$, and B for milled lactose powders	51
3.3	Estimated hopper outlet <i>B</i> for milled lactose powders and Jenike's arbitrary	57
	powder flow divisions (Jenike, 1964)	
4.1	Loose poured bulk density and its standard deviation for milled and spray-	71
	dried lactose powders, sand, and refractory dust	
4.2	Values of fitting parameters c_1 and c_2 , and R^2 for milled lactose and spray-	77
	dried lactose powders, sand, and refractory dust	
5.1	Transition velocities of powders	108
6.1	Information on d^*_{32} , span, t_c/H_{mf} , C_0 , and Geldart Classification for lactose	129
	LP4, sand S1, refractory dust RD1, lactose LM1, lactose LP1, and glass	
	beads B8	

Nomenclature

$A_{\rm p}$	Surface area of material [m ²]
$a_{\rm s}, b_{\rm s}$	Fitting parameters of Equations 3.8 and 3.9 [units according to usage]
$a_{\mathrm{t}}, b_{\mathrm{t}}$	Fitting parameters of Equations 4.1 [units according to usage]
В	Minimum width of outlet required for mass flow from a hopper [m]
С	Cohesion [Pa]
C^*	Estimated cohesion [Pa]
C_0	Cohesion at zero preconsolidation stress [Pa]
c_1, c_2	Fitting parameters of Equation 4.9 [units according to usage]
$d_{\mathrm{p}i}$	Incremental mean particle diameter [m] which is the mean of the sum of upper
	and lower nominal apertures in sieve analysis
d_{10}	Particle diameter at 10% in a cumulative size distribution [m]
<i>d</i> ₃₂	Surface-volume mean particle diameter [m]
<i>d</i> _{32,M}	Surface-volume mean particle diameter measured with Mastersizer 2000 [m]
<i>d</i> _{32,S}	Surface-volume mean particle diameter measured with sieve analysis [m]
d_{32}^{*}	Surface-volume mean particle diameter calculated with Mastersizer data using
	bins equivalent to a full sieve analysis according to BS 410; powder in the range
	of 0–38 μ m has been grouped together and assigned a mean particle diameter of
	19 μm in the calculation [m]
d_{50}	Particle diameter at 50% in a cumulative size distribution [m]
d_{90}	Particle diameter at 90% in a cumulative size distribution [m]
FF	Powder flow function [-]
F_{10}	Fraction of fines smaller than 10 μ m calculated with Mastersizer data [-]
F_{20}	Fraction of fines smaller than 20 μ m calculated with Mastersizer data [-]
F_{30}	Fraction of fines smaller than 30 μ m calculated with Mastersizer data [-]
F_{38}	Fraction of fines smaller than 38 μ m calculated with Mastersizer data [-]
F_{45}	Fraction of fines smaller than 45 μ m calculated with Mastersizer data [-]
ſſ	Jenike hopper flow factor [-]
g	Gravitational acceleration [m s ⁻²]
Н	Powder bed height [m]
$H_{\rm mf}$	Bed height at incipient fluidization [m]
$H_{\rm R}$	Hausner ratio [-]
$H_{\rm R,1250}$	Hausner ratio at 1250 taps [-]
<i>H</i> * _{R,1250}	Hausner ratio estimated with Equation 4.9 and c_1 and c_2 values in Table 4.2 [-]
i	Label for data point [-]
k_1, k_2	Fitting parameters of Equation 3.7 [units according to usage]

$k_{\rm C1}, k_{\rm C2}$	Fitting parameters of Equation 4.10 [units according to usage]
$k_{\rm F1}, k_{\rm F2}$	Fitting parameters of Equation 4.15 [units according to usage]
$k_{\rm G1}, k_{\rm G2}$	Fitting parameters of Equations 3.14 and 3.15 [units according to usage]
$k_{\rm J1}, k_{\rm J2}$	Fitting parameters of Equations 3.12 and 3.13 [units according to usage]
$k_{\rm N1}, k_{\rm N2}$	Fitting parameters of Equations 3.10 and 3.11 [units according to usage]
$k_{\rm s,M1}, k_{\rm s,M2}$	Fitting parameters of Equation 3.6 [units according to usage]
$k_{t,M1}, k_{t,M2}$	Fitting parameters of Equation 4.2 [units according to usage]
m_0	Powder mass in the loose poured state [g]
$m_{\rm tap}$	Powder mass after N^{th} taps [g]
Ν	Number of taps [-]
<i>n</i> (of Chapter 3)	Shear index of Warren-Spring equation [-]
<i>n</i> (of Chapter 5)	Number of data points [-]
n_1, n_2	Fitting parameters of Equation 4.5 [units according to usage]
Р	Applied pressure [Pa]
T (of Chapter 3)	Powder tensile strength [Pa]
T^{-1} (of Chapter 5)	Inverse of von Neumann ratio, Equation 5.2 [-]
t _c	Time required for hindered settling, Equation 5.3 [s]
U	Superficial gas velocity [m s ⁻¹]
$U_{ m bv}$	Minimum vigorous bubbling velocity [m s ⁻¹]
$U_{\rm mb}$	Minimum bubbling velocity [m s ⁻¹]
$U_{\mathrm{mb,v}}$	Experimental minimum bubbling velocity detected by visual inspection of bed
	surface $[m s^{-1}]$
$U_{\mathrm{mb},\sigma}$	Minimum bubbling velocity estimated using the plot of $\sigma: U$ and determining U
	for $\sigma=0$ by extrapolation [m s ⁻¹]
$U_{ m mf}$	Minimum fluidizing velocity [m s ⁻¹]
$V_{\rm B}$	Bulk volume of material [m ³]
V_{Initial}	Initial volume of powder bed in the GDR after the powder was shaken
	horizontally and vertically for an unreported fixed number of times and allowed
	to settle under its own weight [m ³]
V _{New}	Volume of powder in GDR measured at the first 11 revolutions [m ³]
$V_{\rm p}$	Volume of material [m ³]
x (of Chapter 5)	Sample variable; bed pressure drop [Pa]
x_i (of Chapter 2)	Volume fraction of particles in i^{th} mean particle diameter range in sieve analysis
	[-]

Greek letters

$\Delta P_{\rm b}$	Bed pressure	drop	[Pa]
--------------------	--------------	------	------

$\Delta P_{\rm d}$	Distributor pressure drop [Pa]
$\Phi_{\rm w}$	Kinematic angle of wall friction [°]
$\delta_{ m e}$	Effective angle of internal friction [°]
$\varepsilon_{ m mb}$	Bed voidage at bubbling onset [-]
$\varepsilon_{ m mf}$	Bed voidage at incipient fluidization [-]
μ (of Chapter 3)	Coefficient of friction [-]
μ (of Chapter 5)	Gas viscosity, Equation 5.3 [N s m ⁻²]
$ heta_{a}$	Minimum angle for which avalanches are observed [°]
$ heta_{ m p}$	Semi-included angle of the conical section of a hopper [°]
$ heta_{ m s}$	Minimum angle which triggers powders to slip [^o]
$ ho_0$	Initial or loose poured bulk density [kg m ⁻³]
$ ho_{0,mNZS3111}$	Loose poured bulk density measured by the modified NZS3111 method [kg m^{-3}]
$ ho_{ m B}$	Bulk density [kg m ⁻³]
$ ho_{ m g}$	Gas density [kg m ⁻³]
$ ho_{ m p}$	Particle density [kg m ⁻³]
$ ho_{ ext{tap}}$	Tapped density [kg m ⁻³]
$\rho *_{0,1}$	Loose poured bulk density estimated with Equation 4.1 and a_t and b_t values in
	Appendix 4.1 [kg m ⁻³]
$\rho^{*}_{0,2}$	Loose poured bulk density estimated with Equation 4.1, a_t values in Appendix
	4.1 and $b_t=0.0427$, the average value determined with the data of milled and
	spray-dried lactose powders, sand, and refractory dust $[kg m^{-3}]$
$\rho *_{0,3}$	Loose poured bulk density estimated with Equation 4.2 and $k_{t,M1}$ and $k_{t,M2}$ values
	in Appendix 4.1 [kg m ⁻³]
σ (of Chapter 3)	Consolidation stress [Pa]
σ (of Chapter 5)	Standard deviation, Equation 5.1 [Pa]
$\sigma_{ m c}$	Major consolidation stress [Pa]
$\sigma_{ m crit}$	Critical stress developed in an arch surface [Pa]
$\sigma_{\rm c}^*/\sigma_{\rm y}^*$	Estimated ratio of major consolidation stress to unconfined yield stress [-]
$\sigma_{ m D}$	Major stress developed in a dome or pipe [Pa]
$\sigma_{ m pre}$	Preconsolidation stress [Pa]
$\sigma_{ m pre,min}$	Minimum preconsolidation stress [Pa]
$\sigma_{ m ws}$	Standard deviation of GDR drum weight shift [kg]
$\sigma_{ m ws,5RPM}$	Standard deviation of GDR drum weight shift at 5 RPM [kg]
$\sigma_{ m ws,10RPM}$	Standard deviation of GDR drum weight shift at 10 RPM [kg]
$\sigma_{ m ws,15RPM}$	Standard deviation of GDR drum weight shift at 15 RPM [kg]
$\sigma_{ m ws,20RPM}$	Standard deviation of GDR drum weight shift at 20 RPM [kg]
$\sigma_{ m y}$	Unconfined yield stress [Pa]

τ	Shear stress [Pa]
$ au_{ m pre}$	Constant shear stress at preshear [Pa]
$ au_{ m ss}$	Steady-state shear stress [Pa]

 ω Angular velocity [rad s⁻¹]