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Abstract 

Shoot branching that involves development of lateral buds into shoots is one of the 
important factors influencing crop productivity. Strigolactones have recently been found 
to be involved in the control of branching, but the actual bioactive compound/s that 
inhibits bud outgrowth is still unknown. A germination assay utilizing the seeds of a 
parasitic weed (Orobanche minor), detected strigolactones within the xylem exudates of 
different horticultural crop species; the strigolactone concentration negatively correlated 
with branching of cultivars or mutants. In Zantedeschia grown in vivo, the concentration 
of strigolactones was independent on the volume of guttation fluid (xylem exudates) 
suggesting the difference in concentration of strigolactones in high and low branched 
cultivars was due to the difference in potential of producing strigolactones between 
these cultivars and not due to differences in volume of guttation fluid. While identifying 
a bioactive compound using germination and branching assays in combination with 
liquid chromatography and mass spectrometry, compounds containing ‘N’ were 
detected in the low branched wild-type Petunia, but not in the highly branched mutant, 
suggesting the possibility of such compounds being SL-conjugates which may be 
associated with bud outgrowth inhibition.  

In Zantedeshia (in vitro) and pea stems, strigolactone reduced the axillary shoot number 
stimulated by the cytokinin suggesting an antagonistic interaction between these two 
hormones on bud release. However, as cytokinin may stimulate subsequent growth of 
released buds by increasing the auxin transport out of the bud, strigolactone may have 
reduced subsequent growth by reducing auxin transport. Since GA3 enhanced 
subsequent growth of buds in pea stems, but not the release, an antagonistic interaction 
between strigolactone and gibberellins on subsequent growth is possible. Interestingly, 
strigolactone successfully reduced adventitious bud formation in Zantedeschia grown in 
vitro, adding a new role for strigolactones in plant development. 

Despite correlation between strigolactone and branching inhibition in different 
horticultural crops such as apple, kiwifruit, Zantedeschia and Acer, further studies 
relating to strigolactone and its interaction with other hormones on branching of these 
crops could be performed using in vitro techniques for a clear understanding of 
strigolactones’ role on branching inhibition. More importantly, quantification of 
strigolactones using the germination assay may have significant implications in 
horticultural crop breeding for obtaining desired shoot branching. 
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Extended abstract 

Shoot branching, one of the important factors influencing crop productivity, involves 

development of lateral buds into shoots on an actively growing primary shoot.  

Recently, a new hormone, which may be a strigolactone, has been found that inhibits 

bud outgrowth, however, the precise chemical identity of the bioactive compound(s) is 

unknown. A bioassay based on the germination of a parasitic weed (Orobanche minor) 

was optimized to detect strigolactones. Although there has been controversy in the 

literature related to whether or not strigolactones are present in xylem exudates, in this 

thesis strigolactones were found in  xylem exudates of a range of horticultural species. 

The strigolactone concentration correlated with branching of cultivars or mutants 

mainly at the stage of the growth cycle before the branches were visually evident.  

As the germination assay detects all/most strigolactones, not necessarily specifically 

those associated with branching, a more specific bioassay based on branching was 

developed. This bioassay was combined with liquid chromatography and mass 

spectrometry in an attempt to identify a specific branching hormone, whether or not this 

was a strigolactone.  In Petunia, four compounds containing ‘N’ were detected in the 

xylem sap of the wild-type, low branched, V26, but not in highly branched dad3 mutant, 

suggesting the possibility of such compounds being SL-conjugates which may be 

associated with branching inhibition. In Zantedeschia grown in vivo, since the 

concentration of strigolactones was independent of the volume of guttation fluid, it was 

suggested that difference in concentration of strigolactones in high and low branched 

cultivar was due to the difference in potential of producing strigolactones between these 

cultivars and not due to differences in volume of guttation fluid.  

The synthetic strigolactone GR24 (0.1 or 1 mg L-1) was able to reduce axillary shoot 

number stimulated by cytokinin in un-decapitated pea stems, and Zantedeschia grown 

in vitro, suggesting an antagonistic interaction between these two hormones on bud 

release, as opposed to subsequent growth. Likewise, strigolactone (1 mg L-1) reduced 

decapitation-induced bud release, supporting the hypothesis that strigolactone may have 

interacted with endogenous cytokinin and/or sucrose. Strigolactone was also able to 
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reduce subsequent growth of the shoot, but the effect was stronger in buds of pea stems 

orientated horizontally, compared to those orientated vertically. Such disparity was 

possibly due to the fact that, in addition to vascular stream, the buds of horizontally 

orientated stems received strigolactones directly. Although exogenously applied 

cytokinin appeared to enhance subsequent growth of the released bud, the effect of 

cytokinin on subsequent growth may be via increasing the auxin transport out of the 

bud. Hence, rather than interacting with cytokinin, strigolactone may have reduced 

subsequent growth of the buds by reducing auxin transport. As GA3 enhanced the 

subsequent growth of buds in pea stems, but not the release, an antagonistic interaction 

between strigolactone and gibberellins on subsequent growth is considered highly 

likely. Interestingly, strigolactone successfully reduced cytokinin-stimulated 

adventitious bud formation in Zantedeschia grown in vitro. Interaction studies of 

strigolactone with cytokinin, and probably ethylene, is recommended within highly 

branched cultivars of Zantedeschia spp. or other species, such as gentians and kiwifruit, 

to further explore the role of strigolactone in adventitious bud formation and 

development in order to obtain desirable shoots for commercial purposes. 

Although strigolactone correlated with branching inhibition in different horticultural 

crops such as apple, kiwifruit, Zantedeschia and Acer, further studies for answering the 

direct role of strigolactone on bud outgrowth in these crops as well as its interaction 

with other hormones can be performed using in vitro techniques. More importantly, 

quantification of strigolactones using the germination assay may have significant 

implications in horticultural crop breeding for obtaining desired shoot branching. Since 

guttation fluid from Zantedeschia was found to give a true estimate of the concentration 

of strigolactones present in the xylem of the shoot system, future experiments may 

benefit through the use of guttation fluid for hormonal analysis and/or interaction 

studies in vivo. Consideration of the stages of shoot branching during such studies 

would be valuable for a clear understanding of the shoot branching mechanism and help 

modify the branching of commercially important crops. 
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