

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

INCREASING SEATBELT USAGE IN LOGGING SKIDDERS THROUGH

BEHAVIOUR MODIFICATION AND

SEATBELT REDESIGN

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Psychology at Massey University

Mark J.M. Sullman

1994

Massey University Library **Thesis Copyright Form**

Title of thesis: Increasing seatbelt usage in logging skidders Through behaviour modification and seatbelt redesign

- (1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.
 - (b) I do not wish my thesis to be made available to readers without my written consent for .6. months.
- (2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
 - (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for 1.2. months.
- (3) (a) I agree that my thesis may be copied for Library use.
 - (b) I do not wish my thesis to be copied for Library use for

(b) I do not wish my mesis to be copied for Ending as in R2 months. Date 5/7/94

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

Massey University Library Thesis Copyright Form

Title of thesis: Increasing seatbelt usage in logging skidders Through behaviour modification and seatbelt redesign

- (1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.
 - (b) I do not wish my thesis to be made available to readers without my written consent for .6. months.
- (2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
 - (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for 1.2. months.
- (3) (a) I agree that my thesis may be copied for Library use.
 - (b) I do not wish my thesis to be copied for Library use for 2 months.

Signed M J Sullar Date 5/7/94

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

ABSTRACT

This study examined methods for increasing seatbelt usage in one type of heavy logging machine (the skidder). This machine is used extensively for extracting felled trees and transporting them from where they are cut down to a central processing area. Preliminary investigations suggested that the operators of these machines failed to wear their seatbelts because they were poorly designed and because the operators simply forgot.

A survey of the literature on increasing safety behaviours found that the two most powerful techniques were behaviour modification and human factors engineering (or ergonomics). Therefore, these were the two techniques used here.

The standard seatbelts were redesigned to make them easier to use and an orange flashing reminder light was installed into the machines of seven full-time skidder operators. These machines were operating in either Kaingaroa, Rotoehu, Tahorakuri or Te Whakao Forests in the central North Island of New Zealand.

The experiment used a multiple baseline single subject design, with the subjects receiving each treatment twice. With the installation of the redesigned seatbelt, mean seatbelt usage for six subjects rose from 21% to 31%. One subject refused to wear a seatbelt throughout the experiment. Installing the reminder light increased seatbelt usage by a further 1%. Removing the new seatbelt design caused usage to drop 16%. A further decrease of 5% occurred with the return to baseline phase when the reminder light had also been removed. The second introduction of the new seatbelt resulted in an increase in usage from 10% to a mean level of 46%. This was increased a further 22% with the reintroduction of the reminder light can increase the level of seatbelt usage. The results also provide further evidence of the power of both behaviour modification techniques and human factors engineering in the field of occupational safety.

ACKNOWLEDGMENTS

The research reported in this thesis was funded by the New Zealand Logging Industry Research Organisation (LIRO). I wish to thank John Gaskin (Director) for giving me the opportunity to carry out this research, and for all LIRO's support. I would especially like to thank Richard Parker for his comprehensive assistance in getting this project off the ground, and for his extensive participation in the collection of video data. The encouragement Richard gave also proved to be invaluable. Patrick Kirk I would like to thank for his much needed practical advice during periods of catastrophic disasters, and his flow of red ink that he plastered over much of my work. Janelle Byers (Bob) I would like to thank for the time she spent proof reading my thesis in her spare time! The rest of the staff at LIRO I would like to thank for making my stay not only educational, but also fun (especially the end of year golf game and after-match function).

A special thanks goes to all the contractors and workers who stuck with the study, despite all the delays, and provided me with the information necessary to complete this study. The companies who participated in the study also deserve a special thanks for their more than co-operative attitude.

Finally I would like to thank my two supervisors Dr Carol Slappendel (Department of Management Systems at Massey University) and Dr Ross St George (Department of Psychology at Massey University) whose directions and patience saw this thesis through to its conclusion.

TABLE OF CONTENTS

Page

39

39

Abstract	ii
Acknowledgments	iii
Table of Contents	iv
List of Figures	vi

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Approaches to safety in the workplace	1
1.3	The industrial/social approach	3
1.4	Behaviour modification	5
1.5	The problem	6
1.6	Organisation of chapters	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	11
2.2	What is behaviour modification?	11
2.3	Behaviour modification and seatbelts	16
2.4	Reminder light	18
2.5	Engineering interventions	21
2.6	Hypotheses and their rationale	23
2.7	Summary	27

CHAPTER 3 METHODOLOGY

3.1	Introduction		28
3.2	Subjects		28
3.3	Experimental design		30
3.4	Measures		
	3.4.1	Number of seatbelt closures	31
	3.4.2	Number of drags	33
	3.4.3	Verifying the number of drags	33
	3.4.4	Questionnaire	33
3.5	Procedure		34
3.6	Summary		38

CHAPTER 4 RESULTS4.1 Introduction4.2 Reliability of collected data

4.3	Subject 1		
	4.3.1	Seatbelt Usage	39
	4.3.2	Operator Comments and Important Events	40
4.4	Subject 2		
	4.4.1	Seatbelt Usage	42
	4.4.2	Operator Comments and Important Events	43
4.5	Subject 3		
	4.5.1	Seatbelt Usage	45
	4.5.2	Operator Comments and Important Events	46
4.6	Subject 4		
	4.6.1	Seatbelt Usage	49
	4.6.2	Operator Comments and Important Events	50
4.7	Subject 5		
	4.7.1	Seatbelt Usage	52
	4.7.2	Operator Comments and Important Events	53
4.8	Subject 6		
	4.8.1	Seatbelt Usage	54
	4.8.2	Operator Comments and Important Events	55
4.9	Subject 7		
	4.9.1	Seatbelt Usage	57
	4.9.2	Operator Comments and Important Events	58
4.10	Mean seatbelt	t usage for all subjects	60
4.11	Mean seatbelt	t usage for six subjects	62
4.12	Seatbelt Evalu	uation questionnaire	63
4.13	Summary		64

CHAPTER 5 DISCUSSION AND CONCLUSIONS

5.1	Introduction	65
5.2	Discussion of hypotheses	65
5.3	Methodological and environmental problems	69
5.4	Generalisability of the results	72
5.5	Conclusion	74
5.6	Future research	76

REFERENCES

APPENDICES

Appendix 1	Terminology in the Logging Industry	82
Appendix 2	Skidder	84
Appendix 3	Seatbelt Designs and Reminder Light Positioning	85
Appendix 4	Circuit Diagram	87
Appendix 5	Operator Time Sheet	88
Appendix 6	Seatbelt Evaluation Questionnaire	89

77

List of Figures

Figure		Page
3.1	Graphical Representation of the Experimental Design	30
4.1	Seatbelt Usage - Subject 1	40
4.2	Seatbelt Usage - Subject 2	42
4.3	Seatbelt Usage - Subject 3	45
4.4	Seatbelt Usage - Subject 4	49
4.5	Seatbelt Usage - Subject 5	52
4.6	Seatbelt Usage - Subject 6	54
4.7	Seatbelt Usage - Subject 7	57
4.8	Seatbelt Usage - All Subjects	60
4.9	Seatbelt Usage - Summary For Six Subjects	62
4.10	Summary of Seatbelt Evaluation Questionnaire	63