

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

FACTORS AFFECTING THE SOIL BINDING CAPACITY OF THE ROOT SYSTEMS OF SOME POPULUS AND SALIX CLONES

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Botany at Massey University

ROBERT LEONARD HATHAWAY

1973

SUMMARY

The variation in the soil binding capacity of the root systems of six <u>Populus</u> and <u>Salix</u> clones was investigated, and the characteristics of the root systems causing this variation determined.

There were significant differences between clones in soil binding capacity, as measured by the load required to remove the root systems vertically from the soil. This was due more to differences in the morphology of the root systems, particularly the amount of fibrous roots, than to the variation in the tensile strength of individual roots. The variation in the amount of fibrous roots and the tensile strength of individual roots accounted for 71.3% of the variation in the soil binding capacity of the root systems.

There was considerable variation in the morphology of the root systems of trees grown on the same site. The poplar clones generally had more large horizontal roots near the ground surface, with few deep pene-trating roots or fibrous roots, while the willows had mostly deeper root systems, and more fibrous roots. An exception was <u>P. yunnanensis</u>, which had both vertical and horizontal roots well developed, and a large number of fibrous roots.

There was more variation within clones than between clones in the tensile strength of individual roots. Intra-clonal variation in anatomy had a significant effect on tensile strength, variation in specific gravity accounting for 79% of the variation in the tensile strength of the stele of <u>P. 1488</u>, and variation in microfibril angle accounting for 31% of the variation in fibre wall strength and 19% of the variation in specific tensile strength. In general, tensile strength was negatively correlated, with the diameter of the roots.

There was relatively little difference between clones in the tensile strength of the woody part of the roots, only those of <u>P.178</u> being significantly greater in the tensile strength of the stele and specific tensile strength. Differences noticeable in the field were due mainly to variation in the amount of stele present in the roots, which ranged from 25.1% of the cross-sectional area in <u>P. deltoides</u> to 50.3% in <u>S. matsudana</u>. There was some variation between clones in specific gravity and the size

ii

and number of vessels present. Gelatinous fibres were present only in the roots of the willow clones. There was some variation between clones in cellulose and lignin contents. The variation in tensile strength of the stele was correlated with percent fibre wall area and specific gravity, and variation in fibre wall strength and specific tensile strength with cellulose content. There were some significant differences between clones in Young's modulus and strain at failure.

There was considerable seasonal variation in the specific gravity, chemical composition, and tensile strength of the roots. The tensile strength of the stele was highest in the winter months and was correlated with variation in specific gravity. Seasonal variation in fibre wall strength and specific tensile strenth was correlat at a significant level with lignin content and the lignin/cellulose ratio.

iii

ACKNOWLEDGEMENTS

I sincerely thank my supervisor, Dr. E.D. Penny, Botany Department, Massey University for his guidance, assistance, and critical reading of this thesis.

Professor R.G. Thomas, Botany Department, Massey University is sincerely thanked for discussions on the presentation of the thesis, and helpful comments on the text.

The study was carried out whilst employed by the National Plant Materials Centre, Water and Soil Division, Ministry of Works, and I am indebted to Mr C.W.S. van Kraayenoord, Scientist in Charge, for his assistance and advice, and for the provision of nursery facilities.

The Director, Physics and Engineering Laboratory, D.S.I.R., Lower Hutt, is thanked for making the Instron tensile testing instrument available, and I am grateful to Mr D. Baguley for assistance in its operation.

Thanks are due to Mr B.A. Meylan, Physics and Engineering Laboratory, D.S.I.R., Lower Hutt, for helpful advice on methods of tensile testing, and to Dr. R. Bailey, Applied Biochemistry Division, D.S.I.R., Palmerston North, for advice on lignin determinations.

Finally, many thanks to my sister, Kaye, for her excellent typing of this thesis, and to my wife, Heather, for assistance with the text, and considerable patience and encouragement. CONTENTS

.

	Summary				ii
	Acknowled	gement	S		iv
	Contents				v
	List of T	ables	•		viii
	List of F	igures			ix
	Introduct	ion			1
		8			
	CHAPTER 1		REVIEW	OF THE LITERATURE	3
	1	.1	Use of	poplars and willows in erosion control	3
	1	.2	Soil bi	nding capacity of root systems	4
	1	.3	Root sy	stems of poplars and willows	5
			1.3.1	Morphology of root systems	5
			1.3.2	Anatomy of roots	9
			1.3.3	Tensile strength of individual roots	10
	1	.4	Factors	affecting the tensile strength of roots	12
			1.4.1	Diameter of the root	12
			1.4.2	Relative amounts of stele and cortex	12
			1.4.3	Tensile strength of the stele	13
	1		Stress/ of root	strain relationships and extensibility	19
	1			ng the tensile strength of roots and wood samples	20
	1	.7	The mea	asurement of anatomical characteristics	20
			1.7.1	Specific gravity	20
			1.7.2	Cell type percentages and cell wall area	22
			1.7.3	Fibre dimensions	22
			1.7.4	Microfibril angle	23
	- 1	.8	Determi	ining the chemical composition of wood	25
	- 4		1.8.1	Polysaccharides	25
	±		1.8.2	Lignin	26
			1.8.3	Extractives	28
			1.8.4	Starch	28
	CHAPTER 2		MATERIA	ALS AND METHODS	29
	2	.1	Species	s used in the study	29
2		.2	Procedu		30
			2.2.1	Study of the morphology and soil binding capacity of the root systems	30
			2.2.2	Study of intra-clonal variation in the anatomy and tensile strength of individual roots	31
					51

		2.2.3	Study of inter-clonal variation in anatomy, chemical composition, tensile strength, and stress/strain behaviour of individual roots	32
		2.2.4	Study of seasonal variation in specific gravity, chemical composition, and tensile strength of individual roots	33
	2.3	Techni		34
		•	Measurement of soil binding capacity	34
		2.3.2	Tensile testing of individual roots	34
	5	2.3.3	Determination of cross-sectional area of the test samples	40
		2.3.4	Calculation of tensile strength	40
		2.3.5	Preparation of sections for anatomical study	41
		2.3.6	Photomicrographs	42
		2.3.7	Determination of fibre wall area	42
		2.3.8	Determination of proportions of other cell types	42
		2.3.9	Determination of fibre dimensions	43
		2.3.10	Measurement of microfibril angle	43
		2.3.11	Determination of specific gravity	43
		2.3.12	Determination of chemical composition	45
	2.4	Experi	mental design and analysis	46
			4) X	
CHAPTER	3.	RESULT	S	48
	3.1	Morpho	logy of the root systems	48
	3.2		clonal variation in the anatomy and tensile th of individual roots	54
		3.2.1	Anatomy	54
		3.2.2	Tensile strength	54
		3.2.3	Relation between tensile strength and anatomy	54
	3.3	compos	clonal variation in the anatomy, chemical ition, tensile strength, and stress/strain onships of individual roots	59
1, P.*		3.3.1	Anatomy	60
		3.3.2	Chemical composition	66
		3.3.3	Tensile strength	68
		3.3.4	Relation between anatomy, composition, and tensile strength	68
	ų.	3.3.5	Stress/strain behaviour	72
	3.4	Soil b	inding capacity of the root systems	75
	3.5	anatomy	of variation in root system morphology, and y and tensile strength of individual roots, l binding capacity	77

č

vi

	3.6		Seasonal variation in composition, specific gravity, and tensile strength of individual roots.		
		3.6.1	Chemical composition and specific gravity		83
		3.6.2	Tensile strength		87
		3.6.3	Relation between seasonal variation in composition, specific gravity, and tensile strength		87
CHAPTER	4.	DISCUS	SION		91
CHAPTER	5.	CONCLU	SIONS	1	105
Referen	ces			1	107
List of	Append	ices	a a 25	1	116
Appendi	ces		1	18 - 1	161

vii

LIST OF TABLES

1.	Regression coefficients for the multiple regression of tensile strength of the stele on selected anatomical characteristics	57
2.	Regression coefficients for the multiple regression of fibre wall strength on selected anatomical characteristics	58
3.	Regression coefficients for the multiple regression of specific tensile strength on selected anatomical characteristics	59
4.	Anatomical data of roots of each clone with steles of the same diameter (3mm) and values for the tensile strength of the stele closest to the adjusted mean for the clone	65
5.	Chemical composition expressed as a percentage of the total dry weight	67
6.	Chemical composition expressed as a percentage of the starch free dry weight	67
7.	Correlation coefficients between inter-clonal variation in anatomical characteristics and tensile strength	70
8.	Correlation coefficients between inter-clonal variation in composition, and tensile strength	71
9.	Stress/strain characteristics of roots of the six clones	74
10.	Correlation coefficients between inter-clonal variation in Young's modulus and ultimate strain, and specific gravity and composition of individual roots	75
11.	Ranking of morphological, anatomical, and tensile strength characteristics, and soil binding capacity of each clone	77

viii

LIST OF FIGURES

1.	Equipment used for measuring the load required to remove the root systems from the soil	35
2.	A typical tensile test specimen	37
3.	Method of gripping the sample in the tensile testing instrument	37
4.	Morphology of the root systems 49,	50
5.	Number and size of roots originating from the upper and lower regions of the cuttings	51
6.	Relation between intra-clonal variation in anatomy, and tensile strength (P. I488)	56
7.	Typical transverse sections of the steles of the roots 61,	62
8.	Transverse section of root of <u>P. 1488</u> , showing the three- layered structure of the secondary wall	64
9.	Transverse section of a root of <u>S. matsudana</u> , showing gelatinous fibres	64
10.	Transverse section of a root of <u>S. Booth</u> , showing gelatinous fibres, and presence of starch grains in both parenchyma and fibres	64
11.	Inter-clonal variation in the tensile strength of roots	69
12.	Stress/strain behaviour	73
13.	Relation between root system strength index, and proportion of fibrous roots	78
14.	Predicted and actual loads required to remove the root systems	80
15.	Seasonal variation in chemical composition	84
16.	Seasonal variation in specific gravity and actual amounts of chemical components per unit volume of root	85
17.	Seasonal variation in tensile strength	88
18.	Relation between lignin content, lignin/cellulose ratio, and specific tensile strength	90

INTRODUCTION

Man-induced changes in the vegetation of New Zealand over the last century have resulted in large areas of actively eroding land, both in the steeplands which still retain a form of forest cover, and in large areas of moderate to steep hill country cleared for pastoral use.

By 1941, the seriousness of the problem had been recognised, and Catchment Authorities were constituted, under the auspices of the Soil Conservation and Rivers Control Council, to undertake river and erosion control programs.

Many techniques were used in erosion control work, but most emphasis has been placed on the planting of trees, largely Populus and Salix species.

The planting of trees has proven to have a beneficial effect on counteracting erosion by slumping and gullying, both in retired areas and in those still grazed. It may be assumed that this effect is due primarily to the reinforcing and binding effect of their root systems. The reduction of soil moisture by evapotranspiration is considered to be of secondary importance, as water loss from these deciduous trees is very low in winter, which is the period of maximum soil moisture content and thus maximum instability.

In the past, the selection of poplars and willows for erosion control purposes has been based on the growth and characteristics of the shoot of the tree, while almost nothing was known of the root systems. Variations in morphology and strength of root systems obviously are important factors in the selection of the most suitable species or varieties for soil stabilisation purposes.

Objectives of the study

The primary objective of the study was to investigate the morphology, anatomy, and soil binding capacity of the root systems of a representative number of <u>Populus</u> and <u>Salix</u> clones, in order to determine whether any of the clones were likely to be superior for soil stabilisation purposes, and to determine which characteristics of the root systems were most important for this purpose, as a basis for the selection of improved varieties. This involved, firstly, the investigation of the morphology and soil binding capacity of the complete root systems of six clones, and the relation between morphology and soil binding capacity. As the soil binding capacity was likely to depend to a considerable extent on the strength of the individual roots comprising the root system, it was also intended to investigate intra-clonal, inter-clonal, and seasonal variation in anatomy, composition, and tensile strength of individual roots, and the relation between these features.

1.5