Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

FLOWER AND FRUIT DEVELOPMENT IN PROCESSING TOMATOES

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF HORTICULTURAL SCIENCE IN VEGETABLE PRODUCTION AT MASSEY UNIVERSITY

ANTHONY PETER JULIAN 1990

ABSTRACT

Processing tomato crops are mechanically harvested from a single destructive harvest. The timing of this harvest to coincide with the maximum yield of factory grade fruit is of considerable importance to the efficiency of the field operation. There is a lack of information regarding where the factory grade fruit is produced on the plant and for how long the yield of factory grade fruit is maintained at its maximum level in the field.

Two experiments were carried out in the Manawatu using the processing cultivars Castlehye 1204 Improved and UC 82B. The first experiment determined the time of flowering of all the flowers on the plant, the trusses in which these flowers were to be found and the position of these trusses on the plant. 132 days after planting all the plants were harvested and the number and position on the plant of the flowers which set fruit was determined. A normal distribution was found to satisfactorily describe the relationship between the number of flowers reaching anthesis and time. Plants on average carried up to 37 trusses. 65% of the yield was carried on the first 10 trusses to flower with 95% of the yield carried on the first 20 trusses to flower. The efficiency of trusses in producing fruit varied from 66% with the earlier flowering trusses down to negligible levels. Plants had up to 8 main order laterals and together with their attached sub laterals each carried from 4-5 trusses. The efficiency of flowering decreased with the position of the truss up the lateral. It was suggested that the competition between trusses for assimilates is far more important within laterals than between laterals. These results have implications for both crop management and plant breeding programmes.

In the second experiment 9 successional destructive harvests were carried out commencing at the first sign of coloured fruit. Ethryl was not applied to the crop. The yield of red and factory grade fruit was found to peak sharply over time. The normal distribution curve was found to satisfactorily describe the relationship between time and the yield of both red and factory grade fruit and fruit numbers of these grades of fruit. Harvesting one week earlier or one week later than the optimum harvest date resulted in a loss of factory grade fruit of from 10-15 tonnes per hectare. The major cause for this rapid fall in yield from the optimum was due to an increase in the yield of red rotten fruit. In fact over half of the total number of fruit had rotted by 136 days after planting. This included a significant number of green fruit. The magnitude of this loss was only apparent because successional harvests were carried out. The total yield of fruit (all grades) was maintained over a considerable period as the loss in fruit numbers was balanced by the increase in mean fruit weight of the crop. The mean fruit weight of fruit did not increase once they had coloured. The percent soluble solids of red fruit decreased the week following any significant amount of rainfall.

In the light of this research the effect of ethryl on the maturity characteristics of processing tomato crops needs to be re-examined by the use of successional harvests. Reliable techniques also need to be developed to predict the time of optimum harvest as these results suggest that it is much shorter than is commonly thought. The importance of fruit rots in reducing yields and thus effecting the length of the optimum harvest period is also apparent and is another area of research which requires further study.

In the first experiment, the Normal Distribution Curve was found to describe the frequency of flower anthesis versus time relationship in two processing tomato cultivars; Castlehye 1204 Improved and UC 82B. Early fruit setting flowers acted as a strong sink as 90% of the final yield was carried on the first 18 trusses. Yield contributing trusses followed a pattern of increasing distance from the root system the later they flowered. Competition for photosynthate was mainly within laterals but also there was some between lateral competition. Flower trusses exhibited decreasing efficiencies in producing red fruit the later first flower anthesis occurred on the flower truss.

In the second experiment, the yield of Factory Grade tomato fruit from the same two processing tomato cultivars peaked sharply over time. Harvesting one week earlier or later than the optimum harvest date resulted in a Factory Grade yield loss of up to 10-15 t ha⁻¹ for both cultivars. The Normal Distribution Curve was found to describe the relationship between Factory Grade fruit weight and number over time for both cultivars. Both red and coloured fruit weight were also found to follow the Normal Distribution. Over half of the total number of fruit rotted by 136 days after planting. Percentage Soluble Solids of red fruit decreased as rainfall increased in the week preceding harvest, with the converse also shown to apply.

)

ACKNOWLEDGEMENTS

I am extremely grateful to Dr. K.J. Fisher and Dr. M.A. Nichols for their guidance and supervision during the experiments and preparation of this thesis.

I sincerely appreciate the help given to me by Mr. B. Mckay and Mr. S. Davis in designing and analysing the experiment.

I am indebted to Massey University for allowing me to carry out the experiments while in their employment.

Finally I would like to thank my wife Janet for her help and encouragement during the experiment and thesis preparation.

)

TABLE OF CONTENTS

PAGE
BSTRACTII
CKNOWLEDGEMENTSV
ABLE OF CONTENTSVI
IST OF TABLESX
IST OF FIGURESXI
IST OF PLATESXIII
IST OF APPENDICESXIV
NTRODUCTION1
PPENDICES
IBLIOGRAPHY113

PAGE

CHAPTER	ONE:	LITERATURE	REVIEW	 2

1.1	VEGETATIVE DEVELOPMENT OF THE PLANT 2
1.1.1	DEVELOPMENT STAGES2
1.1.1.1	FACTORS AFFECTING GERMINATION2
1.1.1.2	VEGETATIVE DEVELOPMENT4
1.1.2	GROWTH FORMS5
1.1.2.1	INDETERMINATE5
1.1.2.2	DETERMINATE6
1.1.2.3	DWARF6
1.1.2.4	MINIATURE7
1.1.2.5	JOINTLESS7
1.1.3	ATTRIBUTES FOR PROCESSING TOMATO
	VARIETIES7
1.2	FLOWERING8
1.2.1	FLOWER MORPHOLOGY .9
1.2.2	FLOWER DEVELOPMENT9
1.2.2.1	FLOWER INITIATION9
1.2.2.2	DEVELOPMENT11

1.2.3	FLOWERING PATTERN AND THE EFFECTS OF
	THE SOURCE SINK RELATIONSHIPS12
1.2.4	THE INFLUENCE OF CULTURAL FACTORS ON
	FLOWERING, FRUIT SET AND YIELD13
1.2.4.1	PLANT SPACING13
1.2.4.2	IRRIGATION14
1.2.4.3	FERTILIZER15
1.2.4.4	PLANT GROWTH REGULATORS16
1.3	FRUIT DEVELOPMENT17
1.3.1	FRUIT SETTING17
1.3.1.1	POLLINATION18
1.3.1.2	FERTILIZATION18
1.3.1.3	PARTHENOCARPIC FRUIT FORMATION18
1.3.2	FRUIT DEVELOPMENT19
1.3.2.1	GROWTH RATE19
1.3.2.2	SOURCE/SINK RELATIONSHIPS20
1.3.2.3	CHEMICAL CHANGES22
1.3.3	FRUIT RIPENING23
1.3.3.1	PHYSIOLOGY23
1.3.3.2	ETHYLENE PRODUCTION AND APPLICATION 23
1.3.4	FRUIT QUALITY FOR PROCESSING25
1.3.4.1	GRADES26
1.3.4.2	FIRMNESS27
1.3.4.3	SOLUBLE SOLIDS27
1.3.4.4	VINE STORAGE 29
1.4	THE PROCESSING TOMATO INDUSTRY
	IN NEW ZEALAND29
1.4.1	AREAS GROWN29
1.4.2	CULTIVARS29
1.4.3	ESTABLISHMENT METHODS

PLANT SPACING

30

1.4.4

1.4.5

1.4.5.1

1.4.5.3

1.4.5.4

1.4.5.5

1.4.6

1.4.7	YIELDS
1.4.8	MARKETING32

2.1	INTRODUCTION
2.2	MATERIALS AND METHODS
2.2.1.1	PRODUCTION OF CELL TRANSPLANTS33
2.2.2	PREPARATION OF THE FIELD AREA34
2.2.3	TRANSPLANTING
2.2.4	MAINTENANCE OF THE EXPERIMENT AFTER
	ESTABLISHMENT
2.2.5	EXPERIMENTAL DESIGN
2.2.6	RECORDING AND ANALYSES OF DATA37
2.3	RESULTS
2.3.1	FLOWERING PATTERN FOR ALL FLOWERS 39
2.3.2	FLOWERING PATTERN FOR FLOWERS WHICH
	PRODUCE FRUIT
2.3.3	TRUSS POSITION ON THE PLANT40
2.3.4	RELATIONSHIP BETWEEN TRUSS POSITION
	AND FRUIT DEVELOPMENT 42
2.4	DISCUSSION42
2.4.2	GENERAL DISCUSSION42
2.4.3	COMMERCIAL IMPLICATIONS44
2.4.3	RESEARCH IMPLICATIONS44
CHAPTER THREE:	EXPERIMENT TWO45
3.1	INTRODUCTION45
3.2	MATERIALS AND METHODS45
33.2.1	INTRODUCTION45
3.2.2	EXPERIMENTAL DESIGN47
3.2.3	DATA COLLECTION47
3.2.4	ANALYSIS OF DATA
3.3	RESULTS AND DISCUSSION52
3.3.1	PATTERN OF FRUIT MATURITY52
3.3.1.1	GREEN FRUIT52

3.3.1.2	COLOURED, RED AND FACTORY GRADE FRUIT	53
3.3.1.3	ROTTEN FRUIT	53
3.3.1.4	SMALL FRUIT	53
3.3.1.5	TOTAL FRUIT PRODUCTION	54
3.3.2	MATURITY CHARACTERISTICS OF	
	PROCESSING GRADES OF FRUIT	54
3.3.3	SOLUBLE SOLIDS	55
3.3.4	COMMERCIAL IMPLICATIONS	61
3.3.5	RESEARCH IMPLICATIONS	61

LIST OF TABLES

		PAGE
TABLE	I	CHANGES IN COMPOSITION DURING
		RIPENING (GRIERSON AND KADER, 1986) 23
TABLE	II	RIPENESS CLASSES OF TOMATOES26
TABLE	III	MATURITY CLASSES OF GREEN TOMATOES 26
TABLE	IV	NUTRIENT UPTAKE LEVELS
TABLE	V	SIZE OF TRANSPLANTS AT PLANTING 35
TABLE	VI	TOMATO FRUIT GRADES47
TABLE	VII	PREDICTED MAXIMUM WEIGHT, NUMBERS OF
		RED FRUIT AND HARVEST DATE FOR RED
		AND FACTORY GRADES OF FRUIT

LIST OF FIGURES

ĩ

	PAGE
FIGURE I.	NUMBER OF FLOWER OPENINGS PER DAY
	PER PLANT (COMBINED DATA.
	cvs. CASTLEHY 1204 AND UC 82B)64
FIGURE II.	NUMBER OF FLOWER OPENINGS PER DAY
	PER PLANT WHICH PRODUCE FRUIT
	(COMBINED DATA
	CVS. CASTLEHY 1204 AND UC 82B)
	- GRAPH 165
FIGURE III.	NUMBER OF FLOWER OPENINGS PER DAY
	PER PLANT WHICH PRODUCE FRUIT
	(COMBINE DATA
	CVS. CASTLEHY 1204 AND UC 82B)
	- GRAPH 266
FIGURE IV.	EFFICIENCY OF TRUSSES IN PRODUCING
-	RED FRUIT
FIGURE V.	EFFICIENCY OF TRUSSES IN PRODUCING
	FACTORY GRADE (RED AND COL.) FRUIT 68
FIGURE VI.	EFFICIENCY OF TRUSSES IN PRODUCING
	RED, COLOURED AND GREEN FRUIT69
FIGURE VII.	CUMULATIVE PERCENTAGE OF THE NUMBER
	OF RED FRUIT PRODUCED ON EACH TRUSS70
FIGURE VIII.	CUMULATIVE PERCENTAGE OF THE NUMBER
	OF FACTORY GRADE (RED AND COLOURED)
	FRUIT PRODUCED ON EACH TRUSS71
FIGURE IX.	CUMULATIVE PERCENTAGE OF THE NUMBER
	OF RED, COLOURED AND GREEN FRUIT
	PRODUCED ON EACH TRUSS
FIGURE X.	WEIGHT OF FRUIT PER HECTARE
	FOR cv. CASTLEHY 1204 (GRAPH 1)73
FIGURE XI.	WEIGHT OF FRUIT PER HECTARE
	FOR cv. CASTLEHY 1204 (GRAPH 2)74

FIGURE XII.	WEIGHT OF FRUIT PER HECTARE
	FOR cv. UC 82B (GRAPH 1)75
FIGURE XIII.	WEIGHT OF FRUIT PER HECTARE
	FOR cv. UC 82B (GRAPH 2)
FIGURE XIV.	WEIGHT OF RED FRUIT AND GENERATED
	NORMAL CURVE FOR cv. CASTLEHY 120477
FIGURE XV.	WEIGHT OF FACTORY GRADE (RED AND
	COLOURED) FRUIT AND GENERATED
	NORMAL CURVE FOR cv. CASTLEHY 120478
FIGURE XVI.	WEIGHT OF RED FRUIT AND GENERATED
	NORMAL CURVE FOR cv. UC 82B79
FIGURE XVII.	WEIGHT OF FACTORY GRADE
	(RED AND COLOURED) FRUIT
	AND GENERATED NORMAL CURVE
	FOR cv. UC 82B80
FIGURE XVIII.	
	FOR cv. CASTLEHY 1204
FIGURE XIX.	NUMBERS OF FRUIT PER HECTARE
	FOR cv. UC 82B82
FIGURE XX.	FRUIT WEIGHT FOR CV. CASTLEHY 120483
FIGURE XXI.	FRUIT WEIGHT FOR CV. UC 82B84
FIGURE XXII.	WEEKLY RAINFALL AND COMBINED
	SOLUBLE SOLID MEANS FOR
	CVS. CASTLEHY 1204 AND UC 82B85
FIGURE XXIII.	
	TYPICAL PROCESS TOMATO PLANT86
	l.

LIST OF PLATES

PLATE	I.	EXPERIMENTAL AREA AFTER PLANTING36
PLATE	II.	PLANTS ONE DAY AFTER PLANTING .36
PLATE	III.	TOWARDS THE END OF FLOWERING
PLATE	IV.	A CLOSEUP OF THE FLOWER
		RECORDING TAGS
PLATE	v.	UC 82B PLANT WITH THE FRUIT
		ATTACHED
PLATE	VI.	UC 82B PLANT AFTER THE FRUIT
		WAS REMOVED41
PLATE	VII.	FRUITING PATTERN EXPERIMENT EARLY
		FEBRUARY, 198746
PLATE	VIII.	FRUITING PATTERN EXPERIMENT
		AFTER THE FIRST HARVEST46
PLATE	IX.	TRANSPORT OF FRUIT FROM THE FIELD 49
PLATE	Х.	GRADING TABLE49
PLATE	XI.	FRUIT FROM THE FIRST HARVEST51
PLATE	XII.	FRUIT FROM THE LAST HARVEST51
PLATE	XIII.	FIRST HARVEST
PLATE	XIV.	SECOND HARVEST
PLATE	XV.	THIRD HARVEST
PLATE	XVI.	FOURTH HARVEST57
PLATE	XVII.	FIFTH HARVEST
PLATE	XVIII.	SIXTH HARVEST
PLATE	XIX.	SEVENTH HARVEST59
PLATE	XX.	EIGHTH HARVEST
PLATE	XI.	NINTH HARVEST

LIST OF APPENDICES

DIAD

		PAGE
APPENDIX	I.	CELL TRANSPLANT MEDIA87
APPENDIX	II.	SPRAY PROGRAMME88
APPENDIX	III.	SEEDLING LIQUID FEED
APPENDIX	IV.	EXPERIMENTAL AREA SOIL TEST VALUES 90
APPENDIX	ν.	FREQUENCY OF FLOWER OPENING
		- COMBINED DATA FOR BOTH CULTIVARS91
APPENDIX	VI.	FREQUENCY OF FLOWER OPENINGS WHICH
		PRODUCE FRUIT -
		COMBINED DATA FOR BOTH CULTIVARS92
APPENDIX	VII.	NORMAL DISTRIBUTION CURVE
		STATISTICS (EXPERIMENT ONE)93
APPENDIX	VIII.	EFFICIENCY OF TRUSSES IN PRODUCING
		FRUIT94
APPENDIX	IX.	CUMULATIVE PERCENTAGE OF THE
		NUMBERS FRUIT PER TRUSS95
APPENDIX	Х.	FRUIT WEIGHT DATA97
APPENDIX	XI.	FRUIT NUMBER DATA103
APPENDIX	XII.	INDIVIDUAL FRUIT WEIGHT DATA
		(MEANS OF BLOCKS)109
APPENDIX	XIII.	NORMAL DISTRIBUTION CURVE
		STATISTICS (EXPERIMENT TWO)110
APPENDIX	XIV	RED FRUIT SOLUBLE SOLIDS111
APPENDIX	XV	RAINFALL IN SEVEN DAY INTERVALS
		OVER THE HARVEST PERIOD112

INTRODUCTION

An important criteria for the successful harvesting of processing tomatoes, is that a high proportion of the fruit harvested is at the correct stage of maturity for processing. In New Zealand, processing tomatoes are generally harvested when a sample drawn from the crop indicates that optimum maturity has been achieved.

The objective of this study was to demonstrate how the time of harvest for two common cultivars of processing tomatoes used in New Zealand, is very critical and harvesting outside the optimum time can result in a large loss of potential yield. It was also decided to study the flowering pattern of the same two tomato cultivars to find which flower trusses were contributing to the yield of processing grade fruit.