

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

FREQUENCY OF OCCURRENCE OF NOVEL MILK PROTEIN VARIANTS IN A NEW ZEALAND DAIRY CATTLE STUDY POPULATION

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry, Massey University, New Zealand

> Richard Gordon Burr August, 1996

ABSTRACT

Since the discovery of genetic polymorphism within milk protein genes, a considerable volume of research has been published relating milk protein genetic variants and milk production properties. Polymorphism of milk proteins can result in two effects:

(a) changes in the biological and physico-chemical properties of systems containing the variant protein,

(b) changes in the synthesis level of variant proteins.

As a result several studies of milk protein variants have identified phenotypes which may be commercially advantageous for specific products.

Currently employed methods to determine milk protein phenotypes are generally limited to electrophoretic techniques. The gel electrophoretic techniques commonly used are able to detect most milk protein variants that differ by their net electrical charge. However single amino acid substitutions that result in a change in net charge account for only 25% of the possible substitutions that could occur. The remaining 75% of potential variants are the result of a neutral residue substituted by another neutral residue - a 'silent' variant. Thus it is likely that some substitutions, and hence genetic variants have gone undetected in the past.

The purpose of this study was to develop new methods for determining the phenotype of milk proteins, and to determine the frequency of occurrence of silent or other novel variants in a New Zealand dairy cattle study population.

Polyacrylamide gel electrophoresis (PAGE), free zone capillary electrophoresis (CE), peptide mapping by reverse-phase HPLC and electrospray mass spectrometry (ESI-MS) were used in the characterisation of milk proteins purified from 109 individual dairy cows.

Three different PAGE systems were used. Alkaline-urea PAGE enabled the detection of α_{si} -casein variants B and C, β -casein variants group A (variants A¹, A² and A³) and B, and κ -casein variants A and B in the study population. Beta-casein variants A¹, A² and A³ were subsequently resolved in an acid-urea PAGE system. The whey proteins were very poorly resolved in PAGE systems containing urea. Alpha-lactalbumin A, and β -lactoglobulin

(β-LG) variants A and B were resolved in a non-denaturing 'native' PAGE system. The frequencies of the various milk protein variants corresponded closely to figures previously published.

A free zone CE method that is able to resolve β -LG variants A, B and C was used to check the phenotype of purified β -LG samples. Three samples previously typed as β -LG BB were subsequently determined to be β -LG CC; one sample typed as β -LG BB was re-assigned as β -LG BC. This highlighted the limitations of PAGE systems for the detection of known variants.

Tryptic hydrolysis of purified casein proteins and β -LG, followed by reverse-phase HPLC separation of the resultant peptides was used to create peptide 'maps' of the hydrolysis products. Differences in peptide maps were noted between protein variants. The differences corresponded to peptides containing a substitution site. All samples analysed in this way contained more peptide peaks than expected. Analysis revealed that some were the result of incomplete digestion; others the result of chymotryptic-like cleavages. No aberrant peptide maps, indicative of a silent mutation, were detected.

Purified casein proteins and β-LG were subjected to ESI-MS for mass analysis. The mass of each protein species was determined as follows:

Protein	Average mass	Std. dev.	
α _{s1} -CN B-8P	23614.9 Da	1.2 Da	
α _{s2} -CN A-11P	25228.9 Da	1.5 Da	
β-CN A ¹ -5P	24023.9 Da	3.1 Da	
β-CN A ² -5P	23983.5 Da	1.8 Da	
β-CN B-5P	24092.6 Da	n.d.	
κ-CN A-1P	19038.8 Da	1.5 Da	
κ-CN B-1P	19003.8 Da	n.d.	
β-LG A	18362.6 Da	1.0 Da	
β-LG B	18277.0 Da	0.9 Da	
β-LG C	18287.2 Da	0.6 Da	

In all cases the experimentally determined mass corresponded to the mass calculated from published primary sequences of milk protein variants.

In addition to the expected β -LG variant in each mass spectrum, additional species were detected differing from the mass of the β -LG species by increments of approximately 324 Da. Although less pronounced, the +324 Da molecular weight species were also detected in a sample of β -LG purchased from the Sigma Chemical Company. The additional species were also detected in whey prepared by ultra-centrifugation, although at a much lower level.

The 324 Da molecular weight adducts observed in ESI-MS spectra of purified β -LG are consistent with an addition of a lactosyl residue to the protein. The observation that these species remain after heat denaturation, reduction and RP-HPLC treatment suggest that the linkage is covalent. Lactulosyl-lysine is known to form in milk products during some processing conditions, particularly during heating. The observation of these glycated species in gently treated, unheated milk suggests that glycation may occur to some extent in the udder of the cow.

The association of the 324 Da molecule with β -LG does not alter the charge, molecular weight or hydrophobicity sufficiently to be detected by PAGE, CE or RP-HPLC.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to the following:

New Zealand Dairy Research Institute for the opportunity to pursue a higher degree, particularly Dr Mike Boland for his guidance in the direction of this course of study.

Foundation for Research, Science and Technology and the New Zealand Dairy Board for funding.

Drs Chris Moore (senior lecturer, Biochemistry Department, Massey University) and Jeremy Hill (Section Manager, Food Science Section, New Zealand Dairy Research Institute) for their patience, tolerance and supervision during this course of study.

Jo Mudford and Carole Flyger of the Biochemistry Department, Massey University for peptide sequencing.

Professor Brian Nicholson of the Chemistry Department, Waikato University for arranging access to the department's mass spectroscopic facilities.

Wendy Jackson of the Chemistry Department, Waikato University for electrospray - mass spectrometric analysis of peptides and proteins. Particularly for her invaluable help with data analysis and instructions on how to operate the mass spectrometer.

John Allen and Daryl Rowan of the Mass Spectrometry Unit of AgResearch, Palmerston North for providing FAB-MS analysis.

Professor André Ng-Kwai-Hang of the Animal Science Department, McGill University for his encouragement, experience and enthusiasm in establishing the foundations of this work. All of my colleagues at NZDRI, particularly Christina Coker, Wayne Thresher and Lawrie Creamer for their unflagging support, encouragement and many useful discussions on aspects of this work.

Lastly, and most importantly I wish to thank my family for their tolerance and forgiveness for many missed good night stories.

TABLE OF CONTENTS

Abstra	ct				
Ackno	Acknowledgements				
Abbrev	viations	and terminology			
Introdu	uction .	· · · · · · · · · · · · · · · · · · ·			
Literat	ure Rev	view			
1.	Milk co	omposition			
	5				
2.	Hetero	geneity of Bovine Milk Proteins 8			
	2.1	Caseins 9			
		2.1.1 α _{s1} -CN 9			
		2.1.2 α _{s2} -CN 10			
		2.1.3 β-CN			
		2.1.4 κ-CN			
	2.2	Whey Proteins			
		2.2.1 α-La			
		2.2.2 β-LG			
		2.2.3 Serum albumins and immunoglobulins 17			
3.	The m	olecular basis of polymorphism in milk proteins			
4.	Post tr	anslational modifications 21			
	4.1	Phosphorylation			
	4.2	Glycosylation			
	4.3	Disulphide cross-linking 24			
5.	Geneti	c organisation of the milk proteins			
6.	Signifi	cance of polymorphism 29			
	6.1	Milk production			
6.	Signifi 6.1	cance of polymorphism			

	6.2	Milk composition		
	6.3			
		6.3.1 Heat stability	31	
		6.3.2 Association, dissociation and aggregation behaviour of β-		
		LG	33	
		6.3.3. β-LG interaction with κ-CN	34	
		6.3.4. Heat induced gelation of β-LG	34	
		6.3.5. Cheese making	34	
		6.3.5.1. Renneting	34	
		6.3.5.2. Syneresis	36	
		6.3.5.3. Yield and quality	36	
		6.3.6 Other effects	37	
7.	Detec	tion of Polymorphism in Milk Proteins	39	
	7.1	Electrophoresis	39	
		7.1.1 Paper electrophoresis	39	
		7.1.2 Starch gel electrophoresis	40	
		7.1.3 PAGE	40	
	7.2	Isoelectric focusing (IEF) 4		
	7.3	2-D Electrophoresis 4		
	7.4	Liquid chromatography	42	
		7.4.1 Ion-exchange	42	
		7.4.2 Reverse phase	43	
	7.5			
		Peptide Mapping	43	
	7.6	Peptide Mapping	43 44	

Experi	mental		
1	Preliminary Sample Preparation		
	1.1	Preparation of Skim Milk 54	
	1.2	Casein and Whey Preparation 54	
2	Deterr	nination of Electrophoretic Phenotype	
	2.1	Materials and Methods 55	
		2.1.1 Alkaline Urea PAGE 55	
		2.1.2 Acid Urea PAGE 56	
		2.1.3 Native PAGE 56	
	2.2	Results	
		2.2.1 Alkaline-urea PAGE 59	
		2.2.2 Acid-urea PAGE 61	
		2.2.3 Native PAGE 61	
	2.3	Discussion	
3	Milk P	rotein Purification	
	3.1	β-lactoglobulin purification	
		3.1.1 Materials and Methods 65	
		3.1.2 Results	
	3.2	Casein purification	
		3.2.1 Materials	
		3.2.2 Methods 67	
		3.2.3 Results	
		3.2.4 Discussion 69	
4	β-LG P	Phenotyping by Capillary Electrophoresis	
	4.1	Methods and Materials 71	
	4.2	Results	
	4.3	Discussion	

5	Tryps	Γrypsin Purification		
	5.1	Materials and Methods 74		
	5.2	Results		
6	Trypt	ic Hydrolysis		
	6.1	Methods and Materials		
		6.1.1 Hydrolysis 76		
		6.1.2 Peptide Mapping 77		
		6.1.3 Peptide sequencing 79		
		6.1.4 Fast atom bombardment - mass spectrometry (FAB-MS) . 79		
	6.2	Results		
		6.2.1 α _{s1} -CN		
		6.2.2 α _{s2} -CN		
		6.2.3 β-CN		
		6.2.4 к-CN		
	6.3	Discussion		
-				
/	Mass	Spectroscopy		
	7.1	Materials and Methods		
	7.2	Mass Spectrum Data Processing		
	7.3	Results		
		7.3.1 α_{s1} -CN		
		7.3.2 α _{s2} -CN		
		7.3.3 β-CN		
		7.3.4 κ-CN		
		7.3.5 Casein 100		
		7.3.6 β-LG 100		
	7.4	Discussion		
8	Analy	sis of B-LG Adduct Species 107		
	8.1	Reducing sugar test		
		8.1.1 Methods and materials		
		8.1.2 Results		
		8.1.3 Discussion		
	8.2	Nature of adduct association		
	100000000			

		8.2.1 Materials and methods 110
		8.2.2 Results 111
		8.2.3 Discussion 113
	8.3	Preparation of native whey proteins
		8.3.1 Methods and materials 116
		8.3.2 Results
		8.3.3 Discussion 117
9	Discus	sion and conclusion
10	Bibliog	graphy
11	Appen	dix
	11.1	Appendix A - Liquid chromatography time and parameter
		programmes for RP-HPLC separation of milk protein tryptic
		hydrolyses on Shimadzu system
	11.2	Appendix B - FAB-MS spectra of α_{s2} -CN A tryptic peptides 164
	11.3	Appendix C - ESI-MS data spreadsheets and plots of observed
		masses for milk proteins analysed 166
	11.4	Appendix D - Statistical analysis of ESI-MS determined masses . 170
12	Publications	
	12.1	Burr, R., Moore, C.H., Hill, J.P. (1996)
	Evidence of multiple glycosylation of bovine β-lactoglobulin by electrospr ionisation mass spectrometry1	
	12.2	Burr, R. (1996)
	Detect	ion of "silent" milk protein variants
	12.3	Burr, R., Moore, C.H., Otter, D.O., Hill, J.P. (1996)
	Use of	f electrospray ionisation mass spectrometry to elucidate the multiple
	glycati	on of bovine β-lactoglobulin

xi

FIGURES

ş

Figure 1	Distribution of major milk proteins and peptides in bovine milk	8
Figure 2	Primary structure of α _{s1} -CN B-8P	10
Figure 3	Primary structure of α_{s2} -CN A-11P	11
Figure 4	Primary structure of β-CN A ² -5P	12
Figure 5	Primary structure of κ-CN B-1P	13
Figure 6	Primary sequence of α-Lac B	15
Figure 7	Primary sequence of β -LG B	16
Figure 8	Primary sequence of bovine serum albumin	18
Figure 9	Phylogenetic relationships between genetic variants of the major	
	bovine milk proteins	28
Figure 10	Production of vapour phase ionised molecules from a liquid source	
		47
Figure 11	Schematic diagram of an electrospray mass spectrometer	47
Figure 12	Raw and transformed electrospray mass spectra	50
Figure 13 (a)	Alkaline-urea PAGE of whole milk samples from individual cows	58
Figure 13 (b)	Acid-urea PAGE of whole milk samples from individual cows	58
Figure 13 (c)	Non-denaturing 'native' PAGE of whole milk samples from individual	
	cows	59
Figure 14	Non-denaturing 'native' PAGE of salt precipitate prepared $\beta\text{-LG}$	66
Figure 15	Elution profile of casein proteins from S-Sepharose Fast Flow ion-	
	exchange column	68
Figure 16	Alkaline-urea PAGE of peak fractions collected from ion-exchange	
	chromatography of whole casein	69
Figure 17	Capillary electrophoresis of (a) whey protein standards, and $\beta\text{-LG}$	
	purified from acid whey of a β -LG AA phenotype (b), a β -LG BB	
	phenotype (c), a β -LG AB phenotype, a β -LG CC phenotype, and a	
	β-LG BC phenotype	72
Figure 18	Analysis of trypsin purity	75
Figure 19	Typical RP-HPLC tryptic peptide profiles for the casein proteins α_{S1}	
	CN B, α_{s2} -CN A, β -CN A ¹ and κ -CN A	80
Figure 20	Overlay of three α_{s1} -CN tryptic peptide maps	82
Figure 21	Tryptic hydrolysis peptide map of standard $\alpha_{s2}\text{-}CN\;A\;\ldots\ldots\ldots$	84
Figure 22	FAB-MS of peak eluting at 16.4 minutes in RP-HPLC chromatogram	
	of α _{s2} -CN A tryptic digest.	84

Figure 23	Overlays of three tryptic hydrolyses of (a) β -CN A ¹ , (b) β -CN A ² and
	β-CN B
Figure 24	Overlays of tryptic hydrolyses of β-CN variants A ¹ , A ² and B
Figure 25	Overlay of three κ-CN A tryptic peptide maps
Figure 26	Raw ESI-MS spectrum and transformed spectra (inset) of a sample
	of purified α_{s1} -CN
Figure 27	Average individual mass determinations for α_{s1} -CN B samples 94
Figure 28	Average individual mass determinations for each α_{s2} -CN A sample
Figure 29	Average mass determinations for each β -CN sample analysed 96
Figure 30	Average individual mass determinations for each k-CN sample
	analysed
Figure 31	Individual mass determinations for each β -LG sample analysed 101
Figure 32	Multiple molecular weight species detected in β-LG samples 103
Figure 33	RP-HPLC chromatograms of (a) Sigma β-LG, β-LG purified from
	acid whey from a β -LG AA phenotype cow (b), a β -LG BB phenotype
	cow (c), and heat denatured and DTT reduced β-LG from an AA
	phenotype cow
Figure 34	Transformed ESI-MS spectra of (a) Sigma purified β-LG, β-LG
	purified from acid whey from a β -LG AA phenotype cow (b), a β -LG
	BB phenotype cow (c), a β-LG CC phenotype cow (d), and heat-
	denatured, reduced β -LG from an AA phenotype cow
Figure 35	Initial steps of the Maillard reaction 113
Figure 36	Transformed ESI-MS spectra of β -LG in whey prepared by
	ultracentrifugation of the milk from a β -LG AA phenotype (a) and a
	β-LG BB phenotype cow (b) 117
Figure A	FAB-MS analysis of α_{s2} -CN A tryptic hydrolysis RP-HPLC peak
	eluting at 18.1 minutes 164
Figure B	FAB-MS analysis of α_{s2} -CN A tryptic hydrolysis RP-HPLC peak
	eluting at 18.4 minutes 165
Figure C	FAB-MS analysis of α_{s2} -CN A tryptic hydrolysis RP-HPLC peak
	eluting at 18.7 minutes

TABLES

Table 1	Tabulated results of phenotyping by PAGE methods	59
Table 2	Expected tryptic peptides from α_{s1} -CN B and their calculated mass	
	***************************************	78
Table 3	Theoretical tryptic α_{s2} -CN A peptides and their calculated mass	80
Table 4	Additional chymotryptic-like peptides generated from the tryptic	
	hydrolysis of α_{s_2} -CN A	82
Table 5	Expected peptides from a tryptic hydrolysate of β-CN A ²	83
Table 6	Theoretical tryptic peptides from hydrolysis of κ-CN A	85
Table 7	Comparison of milk protein masses determined experimentally and	
	calculated from the primary sequence	96
Table 8	Number of codons specifying a particular amino acid 1	20

xvi

ABBREVIATIONS AND TERMINOLOGY

α-La	Alpha lactalbumin
α _{s1} -CN	Alpha S1 casein
α _{s2} -CN	Alpha S2 casein
β-CN	Beta casein
β-LG	Beta-lactoglobulin
κ-CN	Kappa casein
2-D	Two dimensional
BSA	Bovine serum albumin
CE	Capillary electrophoresis
СНО	Carbohydrate
Da	Dalton
DAD	Diode array detector
DNA	Deoxyribose nucleic acid
ESI-MS	Electrospray ionisation - mass spectrometry
FAB-MS	Fast-atom bombardment mass spectrometry
HPLC	High performance liquid chromatography
IEF	Isoelectric focusing
IEX	lon exchange
PAGE	Polyacrylamide gel electrophoresis
PCR	Polymerase chain reaction
RFLP	Restriction fragment length polymorphism
RP	Reversed phase
UHT	Ultra-high temperature

In the context of this work the following terms are defined as:

Genotype - the genetic constitution of an individual organism. The genetic make up of an animal which codes for the synthesis of an individual milk protein.

Phenotype - the characteristics of an expressed milk protein as a result of the interaction of its genotype with its environment. Post-translational modifications such as phosphorylation and glycosylation frequently alter the gene product (protein) prior to expression in milk.

Electrophoretic variant - a protein variant that is able to be resolved from other genetic variants by electrophoretic techniques.

Silent variant - a protein variant with (an) amino acid substitution(s) that has no net effect on the overall electrical charge of the protein - generally undetected by standard electrophoretic techniques. Silent variants may occur when a neutral amino acid residue is substituted by another neutral residue, or when a residue carrying a charge is substituted by a similarly charged residue.