Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The Raman Spectroscopy of Ionic Liquids

A Thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Chemical Physics

at

Massey University New Zealand

Adam James Swanson 2007

Abstract

Raman and infrared recorded for the ionic liquids spectra were $[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$, $[Et_3NH]^+[(octyl)PO_2H]^-$, $[Bu_4N]^+[(hexyl)PO_2H]^-$, and $[Bu_4P]^+[(octyl)_2PO_2]^-$ and was compared to spectra calculated by Gaussian 03 using the density functional theory method B3LYP. The experimental and calculated spectra were found to be very similar, indicating that no underlying anomalous effects were perturbing the vibrational modes. The peaks of the experimental and calculated Raman and infrared spectra were found to be broad and intertwined, because of the close proximity of numerous vibrational bands.

The differential and absolute scattering cross sections of selected bands of the ionic liquids were determined using a method of comparing the area of the ionic liquid's peak to standards of known cross section (cyclohexane, carbon tetrachloride, benzene, dichloromethane, and acetonitrile). Differential and absolute cross sections were determined experimentally at wavelengths 416 nm, 487 nm, 514 nm, 532 nm and 633 nm. A-term plots were constructed with these results to obtain the coupling constant and the effective excited state energy. These parameters allowed the calculation of the differential and absolute scattering cross sections at any wavelength.

This project is the first in a series of investigations to determine the electron transfer rate of ionic liquids and determine their suitability as materials in new devices.

Acknowledgements

I would like to thank my supervisor Dr Mark Waterland for his endless enthusiasm and encouragement throughout the highs and lows of this thesis. I would also like to thank the Massey University workshop team for their innovative, high quality and timely work on experimental apparatus. Finally, I would like to thank my family and Amanda for their support and encouragement. This work was able to be presented at the 2nd Australian Symposium on Ionic Liquids in Melbourne (11th-12th May 2006) and the NZIC Conference 2006 (2nd-6th December 2006) by funding from Massey University IFSGRF scholarships.

Contents

Abst	ract	ii
Ackı	nowledgments	iii
	Chapter 1	
	Introduction	
1.0	Introduction	1
1.1	Classical formulation of Raman scattering	1
1.2	Quantum formulation of normal Raman scattering	3
1.3	Depolarization ratio	5
1.4	Theory of cross section measurements	7
1.5	Raman coefficients	8
1.6	A-Term fitting to cross sections	10
1.7	Wavelength dependent intensity corrections	11
1.8	Ionic liquids 12	
1.9	Direction of work	14
	Chapter 2	
	Experimental	
2.0	Experimental introduction	15
2.1	Raman equipment setup	15
2.2	416 nm Raman experimental setup	15
2.3	487 nm and 514 nm Raman experimental setup.	20
2.4	532 nm Raman experimental setup	23
2.5	633 nm Raman experimental setup	25
2.6	Depolarization ratio experiment	27
2.7	Frequency calibration	27
2.8	The spectrograph window	28

2.9	Doom dumning	20
	Beam dumping	
2.10	Depolariser	
2.11	Laser light filters	30
2.12	Collection procedure	31
2.13	416 nm collection	31
2.14	487 nm and 514 nm collection	32
2.15	532 nm collection	33
2.16	633 nm collection	34
2.17	Background collection_	35
2.18	White light collection	35
2.19	Polarisation collection	35
2.20	Laser wavelength determination	36
2.21	Infrared experimental collection	36
	Chapter 3	
	Gaussian Calculations	
3.0	Gaussian calculations introduction	37
3.1	Raman calculations run	37
3.3	Raman calculation results	38
3.4	Infrared calculation results	51
3.5	Discussion of Gaussian calculations	63
	Chapter 4	
	Raman and Infrared Band Assignments	
4.0	Introduction to Raman and infrared band assignments	64
4.1	Raman band assignments	64

Chapter 5

A-Term Fitting to Raman Data

5.0	Introduction to A-term fitting to Raman data	68
5.1	Data processing for A-term graphs	68
5.2	A-term fitting to ionic liquid Raman data	71
5.3	Discussion of A-term fitting to Raman data89	
	Chapter 6	
	Conclusion	
6.0	Conclusion	92
6.1	Future work	93
Refe	rences	94

List of Figures and Tables

Figure 1.1: Rayleigh, Stokes, and anti-Stokes scattering	3
Figure 2.1: 416 nm experimental configuration	16
Figure 2.2: Sample configuration for all wavelengths	17
Figure 2.3: Sample configuration used for all wavelengths	18
Figure 2.4: SRS generated 416 nm light illuminating an ionic liquid sample	19
Figure 2.5: SRS light separation after passing though one Pellin-Broca	20
Figure 2.6: Multi-line argon laser and the first Pellin-Broca setup.	21
Figure 2.7: Pellin-Broca separating the light from the argon laser	21
Figure 2.8: 487 nm and 514 nm experimental configuration	22
Figure 2.9: 532 nm light from the YAG pulse laser illuminating a sample	23
Figure 2.10: 532 nm experimental configuration	24
Figure 2.11: HeNe laser used for generating 633 nm light	25
Figure 2.12: 633 nm experimental configuration	26
Figure 2.13: Polariser	27
Figure 2.14: Richard L. McCreery's standard	28
Figure 2.15: Setup of the 532 nm beam dump	29
Figure 2.16: Depolariser	30
Figure 2.17: Edge filter	31
Figure 3.1: Calculated Raman spectrum of $[Et_3NH]^+[(octyl)PO_2H]^-$	39
Figure 3.2: Zoom plot of predicted Raman spectrum [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻	40
Figure 3.3: Experimental and predicted Raman spectrum $[Et_3NH]^+[(octyl)PO_2H]^-$	42
Figure 3.4: Cation and anion of [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻	_42
Figure 3.5: The calculated Raman spectrum $[Bu_4N]^+[hexylPO_2H]^-$	_44
Figure 3.6: Zoom plot of predicted Raman spectrum [Bu ₄ N] ⁺ [hexylPO ₂ H] ⁻	_44
Figure 3.7: Experimental and predicted Raman spectrum $[Bu_4N]^+[hexylPO_2H]^-$	_46
Figure 3.8: Cation and anion of the ionic liquid [Bu ₄ N] ⁺ [hexylPO ₂ H] ⁻	
Figure 3.9: Calculated Raman spectrum $[Bu_4P]^+[(octyl)_2PO_2]^-$	48
Figure 3.10: Zoom plot of the predicted Raman spectrum $[Bu_4P]^+[(octyl)_2PO_2]^-$	_48
Figure 3.11: Experimental and predicted Raman spectrum $[Bu_4P]^+[(octyl)_2PO_2]^-$	
Figure 3.12: Cation and anion of [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻	50
Figure 3.13: Calculated infrared spectrum [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻	

Figure 3.15: Experimental and predicted infrared spectrum[Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻ 54
Figure 3.16: Calculated infrared spectrum [Bu ₄ N] ⁺ [(hexyl)PO ₂ H] ⁻ 56
Figure 3.17: Zoom plot of the predicted infrared spectrum $[Bu_4N]^+[(hexyl)PO_2H]^-56$
Figure 3.18: Experimental and predicted infrared spectrum [Bu ₄ N] ⁺ [hexylPO ₂ H] ⁻ 58
Figure 3.19: Calculated infrared spectrum [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻ 60
Figure 3.20: Zoom plot of the predicted infrared spectrum $[Bu_4P]^+[(octyl)_2PO_2]^-$ 60
Figure 3.21: Experimental and predicted infrared spectrum [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻ 62
Figure 3.22: The predicted spectrum of the anion PO ₂ H(hexyl) illustrating that
numerous bands are involved in forming peaks63
Figure 5.1: 742 cm ⁻¹ mode of $[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$ fitted with gaussian
curves 69
Figure 5.2: Differential scattering cross section vs. excitation energy for 742 cm ⁻¹
band of $[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$ 74
Figure 5.3: Differential scattering cross section vs. excitation energy for 1241 cm ⁻¹
band of $[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$ 76
Figure 5.4: Differential scattering cross section vs. excitation energy for 1300 cm ⁻¹
band of $[Et_3NH]^+[(octyl)PO_2H]^-$ 78
Figure 5.5: Differential scattering cross section vs. excitation energy for 1452 cm ⁻¹
band of $[Et_3NH]^+[(octyl)PO_2H]^-$ 80
Figure 5.6: Differential scattering cross section vs. excitation energy for 1447 cm ⁻¹
band of $[Bu_4N]^+[(hexyl)PO_2H]^-$ 82
Figure 5.7: Differential scattering cross section vs. excitation energy for 1298 cm ⁻¹
band of $[Bu_4P]^+[(octyl)_2PO_2]^-$ 84
Figure 5.7: Differential scattering cross section vs. excitation energy for 1447 cm ⁻¹
band of $[Bu_4P]^+[(octyl)_2PO_2]^-$ 86
Figure 5.8: Unphysical A-term fit for the 742 cm ⁻¹ band of
$[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$ 90
Figure 5.9: The replacement of multiple excited vibrational states with a single
vibrational state for large $\Delta E_{\underline{}}$ 91
Table 3.1: Major Raman intensities [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻ 38
Table 3.2: Comparison of [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻ frequencies41
Table3.3: Major Raman intensities [Bu ₄ N] ⁺ [hexylPO ₂ H] 43
Table 3.4: Comparison of [Bu ₄ N] ⁺ [hexylPO ₂ H] ⁻ frequencies45

Table 3.5: Major Raman intensities [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻	47
Table 3.6: Comparison of [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻ frequencies	49
Table 3.7: Major infrared intensities [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻	51
Table 3.8: Comparison of [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻ frequencies	53
Table 3.9: Major infrared [Bu ₄ N] ⁺ [(hexyl)PO ₂ H] ⁻	55
Table 3.10: Comparison of [Bu ₄ N] ⁺ [(hexyl)PO ₂ H] ⁻ frequencies	57
Table3.11: Major infrared [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻	59
Table 3.12: Comparison of [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻ frequencies	61
Table 4.1: Raman band assignments for [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻	64
Table 4.2: Raman band assignments for $[Bu_4N]^+[hexylPO_2H]^$	65
Table 4.3: Raman band assignments for $[Bu_4P]^+[(octyl)_2PO_2]^-$	<u>6</u> 5
Table 4.4: Infrared band assignments for [Et ₃ NH] ⁺ [(octyl)PO ₂ H] ⁻	66
Table 4.5: Infrared band assignments for $[Bu_4N]^+[hexylPO_2H]^-$	66
Table 4.6: Infrared band assignments for [Bu ₄ P] ⁺ [(octyl) ₂ PO ₂] ⁻	67
Table 5.1: Differential scattering cross sections of known standards	69
Table 5.2: Refractive index and density of the ionic liquids.	70
Table 5.3: Depolarization ratios of ionic liquid bands	72
Table 5.4: Differential scattering cross sections for 742 cm ⁻¹ band of	
$[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$	73
Table 5.5: Absolute scattering cross sections for 742 cm ⁻¹ band of	
$[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$	73
Table 5.6: Differential scattering cross sections for 1241 cm ⁻¹ band of	
$[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$	75
Table 5.7: Absolute scattering cross sections for 1241 cm ⁻¹ band of	
$[CH_3N(C_4H_8)Bu]^+[(F_3CSO_2)_2N]^-$	75
Table 5.8: Differential scattering cross sections for 1300 cm ⁻¹ band of	
${\rm [Et_3NH]}^+{\rm [(octyl)PO_2H]}^-$	77
Table 5.9: Absolute scattering cross sections for 1300 cm ⁻¹ band of	
$[Et_3NH]^+[(octyl)PO_2H]^-$	77
Table 5.10: Differential scattering cross sections for 1452 cm ⁻¹ band of	
${\rm [Et_3NH]}^+{\rm [(octyl)PO_2H]}^-$	79
Table 5.11: Absolute scattering cross sections for 1452 cm ⁻¹ band of	
[Et ₃ NH] ⁺ [(octvl)PO ₂ H] ⁻	79

Table 5.12: Differential scattering cross sections for 1447 cm ⁻¹ band of	
$[Bu_4N]^+[(hexyl)PO_2H]^-$	81
Table 5.13: Absolute scattering cross sections for 1447 cm ⁻¹ band of	
$[Bu_4N]^+[(hexyl)PO_2H]^-$	81
Table 5.14: Differential scattering cross sections for 1298 cm ⁻¹ band of	
$[Bu_4P]^+[(octyl)_2PO_2]^-$	83
Table 5.15: Absolute scattering cross sections for 1298 cm ⁻¹ band of	
$[Bu_4P]^+[(octyl)_2PO_2]^-$	83
Table 5.16: Differential scattering cross sections for 1447 cm ⁻¹ band of	
$[Bu_4P]^+[(octyl)_2PO_2]^-$	85
Table 5.17: Absolute scattering cross sections for 1447 cm ⁻¹ band of	
$[Bu_4P]^+[(octyl)_2PO_2]^-$	85
Table 5.18: Virtual excited state and differential coupling constant for standards	87
Table 5.19: Virtual excited state and differential coupling constant for ionic liquids	s87
Table 5.20: Virtual excited state and absolute coupling constant for standards	88
Table 5.21: Virtual excited state and absolute coupling constant for ionic liquids	88