

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

DORMANCY IN WHEAT GRAIN

(Triticum aestivum L.)

Studies on Grain-coat Pigment Formation and Abscisic Acid Content During the Development of Wheat Grain of Six Genotypes

A Thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Botany

at

Massey University

Isabelle Marjorie Verry 1978

CONTENTS

	rage
LIST OF FIGURES	
LIST OF TABLES	
ABSTRACT	
CHAPTER ONE. DORMANCY AND SPROUTING DAMAGE IN WHEAT	1
CHAPTER TWO. DEVELOPMENT OF THE WHEAT GRAIN	5
2.1 Morphological changes during development	
2.1.1 Introduction	5
2.1.2 Embryo development	5
2.1.3 Endosperm development	6
2.1.4 Development of maternal grain tissues	6
2.2 Dormancy and Grain-coat Colour	
2.2.1 Grain-coat Pigments	7
2.2.2 Phenolic acids and flavonoids	8
2.2.2.1 Biosynthesis and structures	8
2.2.2 In Wheat Grain	9
2.2.3 Functions of phenolics	
2.2.3.1 As inhibitors	10
2.2.3.2 Phenolics and respiratory metabolism	13
2.2.3.3 Phenolics and hormones	14
2.2.4 Enzymes of Pericarp Pigment Biosynthesis	
2.2.4.1 Introduction	15
2.2.4.2 Phenolases	
1. Classification and Reactions	15
2. Flavonoid Polymer Synthesis	16
3. Changes during development	18
2.2.4.2 Peroxidase	
1. Classification and reactions	19
2. Changes during development	20
2.3 Hormones in Developing Wheat Grains	
2.3.1 Introduction	21
2.3.2 Cytokinins	21
2.3.3 Auxin	21
2.3.4 Gibberellins	22
2.3.5 Abscisic Acid	23

Page

2.4	Biosynthetic Changes During Germination	23
2.5	Hormones and Germinative Response	25
CHAPTER T	HREE. GRAIN GROWTH, EMBRYO MATURITY AND GRAIN DORMANCY	
3.1	Introduction	30
	3.1.1 Cultivation and Sampling of Parental Populations	30
3.2	Statistical Analysis	
	3.2.1 Fitting Regression Equations	31
	3.2.1.1 Logistic equations	32
	3.2.2 Comparison of Equations among Genotypes	34
	3.2.3 Estimation of Points of Biological Interest	
	3.2.3.1 Timing differences	35
	3.2.3.2 Response differences	37
3.3	Grain Moisture Content	
	3.3.1 Methods	37
	3.3.2 Results	38
3.4	Embryo Maturity	
5W.	3.4.1 Methods	39
	3.4.2 Results	43
3.5	Grain Dormancy	
	3.5.1 Methods	49
	3.5.2 Results	50
3.6	Discussion	58
CHAPTER F	OUR. THE DEVELOPMENT OF MATURE GRAIN-COAT COLOUR IN WHEAT	
4.1	Introduction	61
4.2	Precursors of the grain-coat pigments	
	4.2.1 Methods	61
	4.2.2 Results and Discussion	62
4.3	Grain-coat Pigments	
	4.3.1 Qualitative Identification	68
	4.3.2 Development During Maturation	70
4.4	Activity of the Enzymes of Pigment Formation	
	4.4.1 Monophenolase Activity with Phenol as Substrate	
	4.4.1.1 Methods	71
	4.4.1.2 Results and Discussion	72
	4.4.2 Diphenolase activity with catechol as substrate	
	4.4.2.1 Methods	75
	4.4.2.2 Results and Discussion	75

.

	4.4.3	Diphen	plase Activity with Flavan-3-ol as Substrate	
	4	.4.3.1	Methods	77
	4	.4.3.2	Results and Discussion	78
CHAPTER F	IVE. A	NALYSIS	OF ABSCISIC ACID FROM DEVELOPING GRAINS	
5.1	Introd	uction		81
5.2	Method	s		81
	5.2.1	Extrac	tion of abscisic acid	83
	5.2.2	Analys	is of Extracted Abscisic acid	
	5	.2.2.1	Separation by high pressure liquid chromatog-	
			raphy	85
	5	.2.2.2	Quantitative estimation	87
	5	.2.2.3	Efficiency of Extraction Procedure	87
	5.2.3	Identi	fication of extracted "Abscisic acid"	
	5	.2.3.1	Co-injection	90
	5	.2.3.2	Mass Spectrometry	92
	5.2.4	Tritic	um aestivum coleoptile bioassay	92
5.3	Result	s of An	alysis by High Pressure Liquid Chromatography	93
5.4	Discus	sion		99
CHAPTER 6	. DISC	USSION		
6.1	Contro	1 of Do	rmancy in Wheat	
	6.1.1	Metabo	lic control	
	6	.1.1.1	The respiratory pathways	103
	6	.1.1.2	The hormones	105
	6	.1.1.3	Summary	107
	6.1.2	Grain-	coat Restraints	
	6	.1.2.1	Composition and grain dormancy	108
	6	.1.2.2	Role of the testa proteins	108
	6	.1.2.3	Role of the testa pigments	110
	6	.1.2.4	The testa and oxygen permeability	111
	6	.1.2.5	Variability of Association of Testa Pigments	114
	6	.1.2.6	Loss of Dormancy and After-ripening processes	
	6	.1.2.7	Summary	117
6.2	Future	Resear	ch	
	6.2.1	The pe	ricarp pigments	117
	6.2.2	The en	zymes of pericarp pigment synthesis	118
			rp proteins	118
			permeability of the grain-coat	119
6.3	Implic	ations	for Breeding for Resistance to Sprouting	120
	Damage	2		

121
134
135
A.1

LIST OF FIGURES

2.1	Biosynthesis of phenolics and flavonoids	
	A. Flavonoid "B"-ring formation	11
	B. Flavonoid "A"-ring formation	12
3.1	Changes in percent moisture during grain development in	
	six wheat genotypes	40
3.2	Changes in percent embryo maturity during grain development	
	in six wheat genotypes	44
3.3	Logistic curves describing percent embryo maturity during	
	grain development of six wheat genotypes	45
3.4	Changes in percent dormancy during grain development in six	
	wheat genotypes	52
3.5	Logistic curves describing percent dormancy during grain	
	development of six wheat genotypes	53
3.6	Germinability at harvest-ripeness in grain of six	
	wheat genotypes	60
4.1	Changes in flavanol concentration in developing wheat grains	
	of six genotypes	64
4.2	Changes in phenol colour score during grain development	
	of six wheat genotypes	73
4.3	Changes in activity of phenolases from developing wheat	
	grains with catechol for substrate	76
4.4	Changes in activity of phenolases from developing wheat	
	grains with catechin for substrate	79
5.1	The structure of abscisic acid	82
5.2	Summary of procedure for extraction of abscisic acid	84
5.3	Co-injection of ABA or t-ABA extracted from developing wheat	
	grains and synthetic t-ABA and ABA mixed isomers standards	91
5.4	Response of wheat coleoptile bioassay to standard amounts of	
	ABA	94
5.5	Changes in amount of ABA and t-ABA per grain in developing	
	wheat grains	97
5.6	Changes in concentrations of ABA and t-ABA in developing	
	wheat grains	98
5.7	Changes in developing grains of six wheat genotypes (water	
	content, dry matter and amount of abscisic acid)	101

LIST OF TABLES

3.1.1	Estimated statistics for equations describing changes	
	in <u>% grain moisture</u> during grain development of six	
	wheat genotypes	41
3.1.2	Estimated t-statistics for differences among pairs of	
	regression statistics of equations for % grain moisture	41
3.2.1	Estimated number of days from anthesis to harvest-ripeness	
	of wheat grain of six genotypes	42
3.2.2	Estimated t-statistics for differences among pairs of	
	estimates of "days to harvest-ripeness"	42
3.3.1	Estimated statistics for equations describing changes	
41	of six wheat genotypes	46
3.3.2	Estimated t-statistics for differences among pairs of	
	regression statistics of equations for percent embryo	
	maturity	46
3.4.1	Estimated number of days to median embryo maturity	
	during grain development of six wheat genotypes	47
3.4.2	Estimated t-statistics for differences among pairs of	
	estimates of "days to median maturity"	47
3.5.1	Estimated percent embryo maturity at harvest-ripeness	
	of grain of six wheat genotypes	48
3.5.2	Estimated t-statistics for differences among pairs of	
	estimates of "percent embryo maturity at harvest-ripeness	48
3.6.1	Estimated statistics for equations describing changes in	
	percent dormancy during grain development of six wheat	
	genotypes	54
3.6.2	Estimated t-statistics for differences among pairs of	
	regression statistics of equations for percent dormancy	54
3.7.1	Estimated number of days to median dormancy during grain	
	development of six wheat genotypes	55
3.7.2	Estimated t-statistics for differences among pairs of	
	estimates of "days to median dormancy	55
3.8.1	Estimated percent dormancy at harvest-ripeness of grain	
	of six wheat genotypes	56
3.8.2	Estimated t-statistics for differences among pairs of	
	estimates of "percent dormancy at harvest ripeness	56
3.9.1	Estimated number of days to ten percent dormancy	
	during grain development of six wheat genotypes	57
3.9.2	Estimated t-statistics for differences among pairs of	
	estimates of "days to ten percent dormancy"	57

4.1.1	Estimated statistics for equations describing changes	
	in concentration of flavanols in grain of six wheat	
	gneotypes during development	65
4.1.2	Estimated t-statistics of differences among pairs of	
	y-intercepts of equations for flavanol concentration	65
4.1.3	Estimated t-statistics of differences among pairs of	
	regression coefficients of equations for flavanol	
	concentration	66
4.2.1	Estimated concentration of flavanols at harvest-ripeness	
	of grains of six wheat genotypes	67
4.2.2	Estimated t-statistics for differences among pairs of	
	estimates of "flavanol concentration at harvest-ripeness	67
4.3.1	Estimated statistics for equations describing changes in	
	phenol colour score during grain development of six wheat	
	genotypes	74
4.3.2	Estimated t-statistics of differences among pairs of	
	regression statistics of equations for phenol colour score	74
5.1	Data for standard solutions of t-ABA and ABA from HPLC	
	chromatograms recorded on Rikadenki print-outs	88
5.2	Estimated statistics of equations for HPLC analysis of	
	standard solutions of t-ABA and ABA	88
5.3	Data and estimated statistics of equations for HPLC analysis	
	of standard solutions of t-ABA and ABA recorded on ISCO	
	printouts	89
5.4	Estimated recovery of t-ABA and ABA after extraction	
	procedure and HPLC analysis	89
5.5	Bioassay response of wheat coleoptiles to standard	
	solutions of ABA	95
5.6	Estimated abscisic acid content, of sample fractions from	
	HPLC analysis, by bioassay response of wheat coleoptiles	95

ABSTRACT

Dormancy in wheat grain has been associated with red pigmentation of the grain-coats. The development from anthesis to harvest-ripeness of two-white-grained and four red-grained genotypes of varying dormancy was investigated. Grain growth was measured as changes in fresh weight and dry matter. Dehydration to harvest-ripeness (17.5% moisture) was calculated. The developmental rates of grain of the six genotypes were similar.

Dormancy-breaking germination tests showed that embryo maturity was attained at similar stages of development of four genotypes. It appeared to be somewhat delayed in two red-grained genotypes, which also had the lowest germination rates in standard germination tests. Dormancy was estimated as the percentage of grains with mature embryos, which did not germinate in the standard germination tests. Grain of all the genotypes had a period of dormancy during development. However, in white-grained genotypes it had disappeared before harvest-ripeness was attained and it lasted only a little longer in one of the red-grained genotypes. In the other three red-grained genotypes, dormancy was prolonged for at least several weeks beyond harvest-ripeness.

The concentrations of flavonoid precursors were similar in grains of all six genotypes throughout their development. Assays of crude extracts of a group of enzymes (phenolases) involved in pigment synthesis did not reveal peaks of activity associated with the appearance of mature grain-coat colour. Successive extractions of the grains showed that the pigment was probably a large flavonoid polymer. The amounts of endogenous abscisic acid in developing grains was analysed by high pressure liquid chromatography. Significant quantities of the 2-trans isomer, as well as of the common 2-cis isomer (abscisic acid) were found. The amounts did not appear to be related to either dormancy or to maturation and dehydration of the grain, as had been suggested.

The mechanisms prolonging dormancy beyond harvest-ripeness in wheat grain were discussed with reference to pigmentation. It was considered that dormancy of the red-grained wheats was probably due to impermeability of the grain-coat to oxygen, possibly resulting from molecular properties of the pigment. These properties were the ability to absorb oxygen, which might prevent it reaching the embryo, and the ability to complex with the large proteins of the immature testa, which might prevent their degradation during grain development. During imbibition the complexed proteins might swell to create a physical barrier to oxygen permeation.