

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EFFECT OF ROOTZONE CONSTRUCTION ON SOIL PHYSICAL PROPERTIES AND PLAYING QUALITY OF GOLF GREENS UNDER NEW ZEALAND CONDITIONS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Plant Science at Massey University New Zealand

Ming-Huang Yang

1999

ABSTRACT

A field experiment was designed to examine the effect of five different rootzone constructions (partially amended sand, silt soil, pure sand, fully amended sand and partially amended plus zeolite sand) and aeration methods (untreated control, HydroJect, Verti-drain and scarifying) on soil physical properties, root development and playing quality of golf greens. The five rootzone constructions were randomly arranged in three blocks. A split plot design was superimposed on the rootzone constructions using different aeration methods. Aeration treatments were carried out in the spring and autumn of 1998. Measurements of bulk density, total porosity, volumetric moisture content, air-filled porosity, infiltration rate, oxygen diffusion rate, saturated hydraulic conductivity, root mass, organic matter content, surface hardness and green speed were made to monitor differences between treatments.

This study found there was no benefit of fully amended sand rootzone compared with partially amended sand rootzones (either plus or without zeolite). Although root development was greater in the pure sand rootzone, this occurred predominantly in the top 50 mm. Excessive accumulation near the surface of the profile can have detrimental impacts on turf growth. Rootzone construction had an important effect on surface hardness, i.e. pure sand rootzone produced the hardest surface, silt soil rootzone the softest and amended sand rootzones intermediate hardness. Rootzone construction had no effect on green speed in this study.

Aeration treatment had no effect on any of the soil, plant or playing quality parameters measured in this study. This suggests either aeration treatments were very short lived or that long term effects of aeration treatments were not yet apparent.

ACKNOWLEDGEMENTS

My most thanks to my chief supervisor, Martin Wrigley, Senior Lecturer in Landscape Management; for his friendly supervision, encouragement, and understanding throughout the duration of my studies; for his tirelessly review of many drafts and suggested areas for improvement and invaluable support whenever I needed it.

Sincere thanks also to Dr. Richard Gibbs, Turf Scientist at the New Zealand Sport Turf Institute, my second supervisor, for his expert guidance, constructive criticism, and patient in correction of my written work.

I would like to express my gratitude to Dr. Bruce Christie, for his friendly help in data analysis and graph preparation. His contribution to this study is invaluable.

I must also thank the rest of the staff at the New Zealand Sports Turf Institute for providing me with an interesting workplace, sharing their knowledge with me, and maintaining the trial.

I would also like to thank the AgResearch Grasslands, for helping me in data collection and using their equipment.

Final thanks must go to my parents; for their love, encouragement and support; and to my fiancee, Chen Chen, for her love, understanding and contribution.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
1. Introduction	1
2. Review of Relative Literature	2
2.1 Compaction	2
2.1.1 The Process of Compaction	2
2.1.2 Effects on Soil Properties	3
2.1.2.1 Increased Bulk Density	4
2.1.2.2 Increased Soil Strength	4
2.1.2.3 Altered Pore Size Distribution	5
2.1.2.4 Reduced Aeration	6
2.1.3 Effects on Soil Microbial Activities	7
2.1.3.1 Decomposition Delayed	8
2.1.3.2 Nitrogen Cycling Interrupted	8
2.1.3.3 Aggregate Stability	9
2.1.3.4 Pathogens Enhanced	10

2.1.4 Effect on Turfgrass	10
2.1.4.1 Root Growth	10
2.1.4.2 Shoot Growth	12
2.1.4.3 Nutrient Relations	12
2.1.4.3 Water Relations	13
2.1.5 Preventing and Alleviating	13
2.2 Sand-based Rootzone and Amendment	14
2.2.1 Organic Materials	14
2.2.1.1 Peat	14
2.2.1.2 Rice Hulls	15
2.2.1.3 Sawdust and Shredded Bark	16
2.2.1.4 Composts	16
2.2.2 Inorganic Materials	17
2.2.2.1 Calcined Clay	17
2.2.2.2 Calcined Diatomites	18
2.2.2.3 Vermiculite	18
2.2.2.4 Perlite	18
2.2.2.5 Slag and Fly Ash	19
2.2.2.6 Clinoptilolitic Zeolite	19
2.2.3 Other Materials	20
2.2.3.1 Water-absorbing Polymers	20
2.2.3.2 Rootzone Stabilising Agents	20
2.2.4 Amendments' Selection	20

iv

2.3 Aeration		22
2.3.1 5	Soil Aeration	22
	2.3.1.1 Core Cultivation	22
	2.3.1.2 Water Injection	25
	2.3.1.3 Verti-drain	27
	2.3.1.4 Spiking and Slicing	29
	2.3.1.5 Mole Ploughs	- 30
	2.3.1.6 Developing Cultivation Programs	31
2.3.2	Turf Aeration	32
	2.3.2.1 Organic Matter Accumulation	32
	2.3.2.2 Causes of Thatch Accumulation	33
	2.3.2.3 Effects of Thatch	34
	2.3.2.4 Control of Thatch	36
2.4 Playing (Quality	39
2.4.1	Hardness	39
2.4.2 Green Speed		40
Material and M	lethods	42
3.1 Experime	ental Design	42
3.2 Establish	ment, Maintenance and Treatments	44
3.3 Sampling	g Protocol	46
3.3.1	Rootzone Characteristics	46
3.3.2	Root Development and Organic Matter Content	47

3.

v

3.3.3 Playing Quality	48
3.4 Statistical Analysis	49
4. Results	50
4.1 Rootzone Characteristic	50
4.1.1 Rootzone Construction	50
4.1.2 Aeration Treatment	58
4.2 Root Development and Organic Matter Content	64
4.2.1 Rootzone Construction	64
4.2.2 Aeration Treatment	65
4.3 Playing Quality	70
4.3.1 Rootzone Construction	70
4.3.2 Aeration Treatment	71
5. Discussion	76
5.1 Rootzone Characteristic	76
5.1.1 Rootzone Construction	76
5.1.2 Aeration Treatment	78
5.2 Root Development and Organic Matter Content	79
5.2.1 Rootzone Construction	79
5.2.2 Aeration Treatment	79

vi

5.3 Playing Quality	81
5.3.1 Rootzone Construction	81
5.3.2 Aeration Treatment	81
5.4 Correlation Analysis	83
6. Conclusions	84
6.1 Rootzone Construction	84
6.2 Aeration Treatment	86
7. References	87

AP	PE	ND	IX
~ ~~	-		~~ ~

vii

94

LIST OF TABLES

Table 1. Reference chart of green speeds calculated by stimpmeter technique	41
Table 2. Particle size distribution of pea gravel	42
Table 3. Characteristics of the rootzone media	43
Table 4. Aeration treatments	44
Table 5. Trial maintenance during 1997 and 1998	45

LIST OF FIGURES

Figure 1. Circular motion corer	23
Figure 2. Vertical motion Corer	24
Figure 3. The mode of action of the HydroJect	26
Figure 4. Verti-drain operation	27
Figure 5. Improved aeration due to shattering effect of a solid tine	28
Figure 6. A simple home-made spiked roller	29
Figure 7. Slicer with restoration roller	30
Figure 8. A mini-mole plough	31
Figure 9. Knives on a vertical mower	37
Figure 10. Main treatment design	43
Figure 11. (A) Mean bulk densities of each constructed rootzone measured at 0-35 mm, 35-70 mm and 70-105 mm depths. (B) Mean total porosities of each constructed rootzone measured at 0-35 mm, 35- 70 mm and 70-105 mm depths, 13 months after construction.	53
Figure 12. Mean volumetric moisture content of each constructed rootzone measured at 0-35 mm, 35-70 mm and 70-105 mm depths, 13 months after construction.	54
Figure 13. Mean air-filled porosities of each constructed rootzone measured at 0-35 mm, 35-70 mm and 70-105 mm depths, 13 months after construction.	55
Figure 14. (A) Mean infiltration rates of each constructed rootzone. (B) Mean oxygen diffusion rates of each constructed rootzone.	56
Figure 15. (A) Mean moisture content (0-50 mm, including sward) of each constructed rootzone. (B) Mean saturated hydraulic conductivities of each constructed rootzone.	57

 Figure 16. (A) Mean bulk densities of each aeration treatment measured at 0-35 mm, 35-70 mm and 70-105 mm depths, 1 month after aeration. (B) Mean total porosities of each aeration treatment measured at 0-35 mm, 35-70 mm and 70-105 mm depths, I month after aeration. 	59
Figure 17. Mean volumetric moisture contents of each aeration treatment. measured at 0-35 mm, 35-70 mm and 70-105 mm depths, 1 month after aeration.	60
Figure 18. Mean air-filled porosities of each aeration treatment measured at 0-35 mm, 35-70 mm and 70-105 mm depths, 1 month after aeration.	61
Figure 19. (A) Mean infiltration rates of each aeration treatment. (B) Mean oxygen diffusion rates of rach aeration treatment.	62
Figure 20. (A) Mean moisture contents (0-50 mm, including sward) of each aeration treatment. (B) Mean saturated hydraulic conductivities of each aeration treatment measured 1 month after aeration.	63
Figure 21. Root dry weight in relation to rooting depth and rootzone construction.	66
Figure 22. (A) Mean total root weight of each constructed rootzone. (B) Mean organic matter contents of each constructed rootzone measured 13 months after construction.	67
Figure 23. Root dry weight in relation to rooting depth and aeration treatment.	68
Figure 24. (A) Mean total root dry weight of each aeration treatment. (B) Mean organic matter contents of each aeration treatment measured 1 month after aeration.	69
Figure 25. Mean surface hardness (0.5 kg) of each constructed rootzone.	72
Figure 26. (A) Mean surface hardness (2.25 kg) of each constructed rootzone. (B) Mean green speeds of each constructed rootzone.	73
Figure 27. Mean surface hardness (0.5 kg) of each aeration treatment.	74
Figure 28. (A) Mean surface hardness (2.25 kg) of each aeration treatment. (B) Mean green speeds of each aeration treatment.	75

х