Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

An Ergonomics Analysis of Manual versus Chainsaw High Ladder Pruning of *Pinus* radiata in New Zealand

A thesis in partial fulfilment of the requirements for the degree of Master of Philosophy at Massey University.

Abstract:

Two methods of ladder pruning *Pinus radiata* from 4.5 - 6.0 metres were compared using a cost-benefit approach within a framework provided by ergonomics. Chainsaw pruning is practiced in areas of New Zealand where large branches occur.

The objectives of the research were to compare the costs and benefits of the two pruning techniques and provide recommendations as to whether or not the practice of chainsaw pruning should continue. These objectives were achieved by comparing the risk of injury, the physiological costs, the musculoskeletal costs, the productivity and the quality associated with the use of the two techniques.

The general methods used to assess the relative costs and benefits of the two techniques were:

- 1. Numeric descriptions of the 'risk' involved with each method of pruning
- 2. The use of a relative heart rate index to compare the physiological costs of the two techniques
- 3. Using questionnaires focusing on musculoskeletal pain and discomfort to assess any relative differences between the two techniques
- 4. Using continuous time study to quantify any difference in labour productivity between the two techniques
- 5. Sampling pruned trees to assess differences in the quality of work between manual and chainsaw pruning

The research concludes that although both methods of pruning are hazardous, chainsaw pruning is more hazardous than manual pruning. Chainsaw and manual pruning were found to have the same physiological costs. Findings of the research indicate that manual pruning is not associated with a higher prevalence of musculoskeletal discomfort than chainsaw pruning on a yearly basis, although it is associated with a greater relative increase in BPD on a day to day basis and that this may lead to the development of musculoskeletal disease. Chainsaw pruning was found to be significantly more productive than manual pruning, although this was at the cost of quality.

The research concludes by recommending that the use of chainsaw pruning should be limited to areas where the branches are demonstrably large. Further research is called for to compare the physiological and musculoskeletal costs of manual pruning in plantation areas of both large and small branch sizes. Further research is called for to compare the safety of two methods of chainsaw pruning with the use of the technique of wrapping one leg around the tree as opposed to not wrapping the leg around the tree. Research to investigate new ladder designs which are safer to use in the New Zealand forest environment is also called for.

Acknowledgments

I am indebted to many people for help and support in the completion of this thesis. Firstly I would like to thank Carol Slappendel whose professionalism, enthusiasm, encouragement and inspired teaching first started me considering masterate level studies. Many thanks to Ian Laird and Richard Parker who gave continued support. humour and valuable feedback during the writing of the thesis. I would also like to thank Pat Kirk and Chris O'Leary for their wealth of practical and applied research experience which they provided me with. The efforts of Brian Saunders in helping make contact with contractors and pruners are appreciated. Thanks to John Gaskin for giving me the opportunity to work at LIRO and carry out the research. Thanks are also due to Chris and Aggie O'Leary, Stu Tasker, Laurie and Fee Gannaway, and Rex McPhee and crew for their hospitality while I was in Hawkes Bay. A special thank you to my partner Sue for moral support, good humour and great company during those times in between writing the thesis. And finally to the pruners and contractors who gave up their time willingly and made this project possible. To all these people, I am deeply indebted and grateful for making this such a challenging and successful year, thank you.

Table of Contents

CHAPTER 1 INTRODUCTION TO ERGONOMICS AND FORESTRY	1
1.0 Introduction	1
1.1 An Ergonomics Framework	1
1.2 General Ergonomic Concepts	6
1.3 Forestry (Background)	10
1.4 Study Background	15
1.5 Summary	17
CHAPTER 2 LITERATURE REVIEW	18
2.0 Introduction	18
2.1 Safety and Ergonomics	18
2.1.1 Personnel Characteristics	19
2.1.2 Machinery, Tools and Equipment	28
2.2.3 The Organisation of Work	30
2.2.4 The Physical Environment	30
2.2 Productivity and Quality	32
2.3 Cost-Benefit Analyses	32
2.4 Summary	33
CHAPTER 3 METHODOLOGY	34
3.0 Introduction	34
3.1 Research Design	34
3.2 A Quasi-Experiment: Sample Size and Subject Selection	35
3.3 Statistical Design for Quasi-Experiment	37
3.4 Ethical Approval	39
3.5 Subject Characteristics	39
3.6 Hazard Identification and Analysis	42
3.6.1 Definitions of Hazard Classes	43
3.6.2 Method of Collection for Hazard Frequency Data	44
3.6.3 Calculation of the Risk Score	46
3.6.4 Observed versus Perceived Hazard Frequency	47
3.6.5 Retrospective Accident Surveys	47
3.7 Physiological Costs	48
3.7.1 Method of Monitoring Heart Rates	48

3.7.2 Methods for the Determination of Physiological Cost Parameters	49
3.7.3 Rated Perceived Exertion (RPE) Protocol	52
3.7.4 Environmental Temperature Monitoring	53
3.8 Musculo-Skeletal Discomfort	53
3.8.1 'Health and Safety Executive' Questionnaires	54
3.8.2 Body Part Discomfort (BPD) Surveys	55
3.9 Productivity	57
3.10 Quality	63
3.11 Summary	63
CHAPTER 4 RESULTS	65
4.0 Introduction	65
4.1 Subject Characteristics	65
4.2 Hazard Analysis	66
4.2.1 Risk Score	66
4.2.2 Retrospective Accident Survey in Conjunction with the HSE Questionnaire	70
4.2.3 Retrospective Accident Survey in Conjunction with the Risk Score Question	naire 71
4.3 Physiological Costs	72
4.3.1 Percentage Heart Rate Range (%HRR) at Work	72
4.3.2 Resting Heart Rates at Work (RHR)	73
4.3.3 Calibration of Heart Rate Monitors	73
4.3.4 Rated Perceived Exertion (RPE)	74
4.3.5 Thermal Environmental Monitoring	75
4.4 Musculo-Skeletal Discomfort	76
4.4.1 Health and Safety Executive Questionnaires	76
4.4.2 Body Part Discomfort (BPD) Surveys	76
4.5 Productivity	79
4.5.1 Delays	80
4.5.2 Tree Characteristics	80
4.6 Quality	81
4.7 Summary	82
CHAPTER 5 DISCUSSION	83
5.0 Introduction	02
5.0 Introduction	83
5.1 Subject Characteristics	83
5.2 Hazard Analysis	88
5.2.1 Observed versus Percieved Frequencies of Hazards	88
5.2.2 Hazard Frequency and Ratings	89
5.2.3 Retrospective Accident Survey	105
5.3 Physiological Costs	100

5.4 Musculo-Skeletal Discomfort	115
5.4.1 Health and Safety Executive Questionnaires	115
5.4.2 Body Part Discomfort	116
5.4.3 Summary	117
5.5 Productivity	117
5.6 Quality	123
5.7 Cost-Benefit Analysis	126
5.7.1 Cost-Benefit Decision Criteria	127
5.8 Summary	129
CHAPTER 6 CONCLUSIONS	130
6.0 Introduction	130
6.1 Conclusions (Operational Hypotheses)	130
6.2 Conclusions (General Hypotheses)	131
6.3 Cost-Benefit Analysis	131
6.4 Summary	132
CHAPTER 7 RECOMMENDATIONS	133
7.0 Introduction	133
7.1 Recommendations (Operations and Techniques)	133
7.2 Recommendations (Future Research)	133
REFERENCES	135
GLOSSARY OF TERMS	147
List of Figures	
FIGURE 1.01 THE HUMAN-MACHINE SYSTEM	5
FIGURE 1.02 STRESS-STRAIN MECHANISM	7
FIGURE 1.03 MODEL OF LIMITED CAPACITY	9
FIGURE 1.04 PRUNING TOOLS	13
FIGURE 1.05 PRUNING CHAINSAW	13
FIGURE 4.01 OBSEVED VS PERCEIVED HAZARD FREQUENCY FOR CHAINSAW PRUNERS	69
FIGURE 4.02 OBSERVED VS PERCEIVED HAZARD FREQUENCIES FOR MANUAL	0,
PRUNERS	69
FIGURE 4.03 COMPARISON OF MUSCULOSKELETAL DISCOMFORT FOR CHAINSAW	
AND MANUAL PRUNERS	77
FIGURE 4.04 COMPARISON OF DAMAGE EVENTS PER TREE	82
FIGURE 5.01 MODEL OF BRANCH OCCLUSION	125

List of Tables

TABLE 3.01 AGE CORRECTION FACTORS FOR VO2 (MAX) ESTIMATES	41
TABLE 3.02 LADDER HAZARDS	43
TABLE 3.03 CUTTING LARGE BRANCHES ABOVE THE HEAD	43
TABLE 3.04 CUTTING ACROSS THE ARMS OR LEGS	43
TABLE 3.05 OVERREACHING HAZARDS	43
TABLE 3.06 CUTTING BRANCH TOO CLOSE TO THE STEM HAZARDS	43
TABLE 3.07 HOLDING ON TO THE BRANCH BEING CUT HAZARDS	44
TABLE 4.01 SUBJECT CHARACTERISTICS OF CHAINSAW PRUNERS.	65
TABLE 4.02 SUBJECT CHARACTERISTICS OF MANUAL PRUNERS.	66
TABLE 4.03 ESTIMATED VO2 (MAX) OF CHAINSAW PRUNERS.	67
TABLE 4.04 ESTIMATED VO2 (MAX) OF MANUAL PRUNERS.	67
TABLE 4.05 FREQUENCY OF HAZARD OCCURRENCE.	68
TABLE 4.06 CHAINSAW PRUNERS' HAZARD FREQUENCY. MORNING VS AFTERNOO	N.68
TABLE 4.07 MANUAL PRUNERS' HAZARD FREQUENCY. MORNING VS AFTERNOON.	
TABLE 4.08 AVERAGE NUMBER OF TREES PRUNED PER DAY	70
TABLE 4.09 RISK SCORES FOR MANUAL PRUNERS.	70
TABLE 4.10 RISK SCORES FOR CHAINSAW PRUNERS.	71
TABLE 4.11 RETROSPECTIVE ACCIDENT SURVEY OF PRUNERS IN THE STUDY	71
TABLE 4.12 ACCIDENT FREQUENCIES OCTOBER 93 - OCTOBER 94	72
TABLE 4.13 %HRR OF CHAINSAW PRUNERS	73
TABLE 4.14 %HRR OF MANUAL PRUNERS	73
TABLE 4.15 TEST OF SIGNIFICANT DIFFERENCES BETWEEN RHR PRE-WORK AND	
RHR POST-WORK.	73
TABLE 4.16 HEART RATE CALIBRATION TESTS.	73
TABLE 4.17 RPE CORRELATIONS FOR CHAINSAW VS MANUAL	75
TABLE 4.18 ALL RPE CORRELATIONS	75
TABLE 4.19 CYCLE ELEMENTS FOR MANUAL AND CHAINSAW PRUNERS	79
TABLE 4.20 ACTUAL VS THEORETICAL PRODUCTION RATES	80
TABLE 4.21 COMPARISON OF DELAY TIMES BETWEEN CHAINSAW AND MANUAL	
PRUNERS	80
TABLE 4.22 COMPARISON OF TREE CHARACTERISTICS FOR CHAINSAW AND MANU	AL
PRUNERS	81
TABLE 4.23 DAMAGE EVENTS PER TREE. CHAINSAW VS MANUAL PRUNING	82
TABLE 5.01 CONSEQUENCES TIMES LIKELIHOOD OF INJURY FOR CHAINSAW	-
사용으로 가게 되었다. 그는 사용 가는 사용으로 보고 있는데 보고 있는데 	104
TABLE 5.02 CONSEQUENCES TIMES LIKELIHOOD OF INJURY FOR MANUAL PRUNER	S104
	108
TABLE 5.04 PERCENTAGE OF AFTERNOONS WITH A SIGNIFICANT ELEVATION	
	112
TABLE 5.05 PREDICTED PRUNE TIME VS CROSS-SECTIONAL AREA OF BRANCHING	
보이라고 있다. 그리고 있는 것으로 그는 모든 그는 그는 것이 되는 것이 되었습니다. 그리고 있는 것이 되었습니다. 그는 것이 없는 것이다.	126

Table of Appendicies

APPENDIX - 1-HEALTH AND SAFETY EXECUTIVE (HSE) QUESTIONNAIRE	150
APPENDIX - 2 VO2 TESTING PROTOCOL.	156
APPENDIX - 3 LIRO PRUNING STUDY.	157
APPENDIX - 4 BORG'S RPE SCALE.	162
APPENDIX - 5 BODY PART DISCOMFORT (BPD) SURVEY	163
APPENDIX - 6 USE OF SUNNTO CLINOMETER	164
APPENDIX - 7 BRANCH SAMPLING SHEET.	165
APPENDIX - 8 PRIORITIES FOR ACTION	166
APPENDIX - 9 CORRELATIONS OF HEART RATE AND RPE	167
APPENDIX - 10 PRUNE TIME VERSUS THREE TREE CHARACTERISTICS	170