Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

DETERMINATION OF THE DISTRIBUTION OF WATER DROPLET SIZES IN BUTTER AND MARGARINE USING PULSED FIELD GRADIENT-NMR AND CONFOCAL SCANNING LASER MICROSCOPY

This thesis was presented in partial fulfillment of the requirements for degree of Master of Science in Chemistry at Massey University

吕 明 Ming Lu

1999

献给:

我的父母,

姐妹,

毛毛,

爱我的人.

Abstract

PFG-NMR has been used to determine the distribution of water droplets in emulsions. Especially, it has been used to measure the samples with high optical dense systems and highly viscous systems Butters and Margarines).

To refine the method, the optimum measuring condition was investigated. It included delay time (Δ) between the field gradient pulses, τ null (τ_0), gradient strength (G), water self-diffusion coefficients (D) and sampling techniques. Under the optimum conditions the water droplet size distributions of commercial butters, experimental butters and margarines were measured.

Experimental results showed that PFG-NMR is an accurate, fast method to determine the water droplet size distributions of the butters and margarines. Also, it is can be used to investigate the properties of dispersed phase in emulsions. Especially, the method is suitable not only in the laboratory but also in the factory environment. The method was able to distinguish different distributions in butters of the same water content but with different manufacturing techniques. Differences in the distributions of water droplets were also obtained when comparing butters made by the same manufacturing technique but with different water contents.

To confirm the results from PFG-NMR, confocal scanning laser microscopy (CSLM) was chosen to determine the droplet size distributions and the moisture contents of samples. Comparison between PFG-NMR and CSLM shows limitations in the latter techniques and its uses are limited.

Acknowledgments

I would like to thank the following people who gave me great assistance when undertaking my studies at New Zealand Dairy Research Institute (NZDRI) and Massey University.

The biggest thanks go to my co-supervisors for their supervision and enthusiasm during the research of this project: Associate Professor Ken Jolley (Massey University) and Principle Research Scientist Alastair H MacGibbon (NZDRI).

Special thanks go to the Professor Andrew Brodie (Massey University).

If there are not their kind encouragement and assistance, I would not have finished my study in Massey University.

I wish to further thank the following people. Much of the work would not have been possible without the gratefully acknowledged contributions from the these people:

Yvonne van der Does (NZDRI) for her kind assistance in the project.

Tony McKenna (NZDRI) for help in the study of Confocal Scanning Laser Microscopy (CSLM).

Robyn L Hisrt (NZDRI) for help in the sample preparations of CSLM.

Dr. Pat W M Janssen (NZDRI) for introducing me to use the VIPS program of image analysis and refine the program.

Susan Lane (NZDRI) for separation of the aqueous phase and the milkfat phase from butters.

Dr. Sarah L Codd (Massey University) for high resolution NMR measurements (Bruker AMX 300).

Dr. Pat J B Edwards (Massey University) for high resolution NMR measurements (JOEL-GX 270).

My Chinese friends: Dr. Yinqu Wu, Dr. Fuguang Cao and Yuming Li.

Thanks also to members of the Food Science Section of NZDRI and the Institute of Fundamental Sciences for their assistance and help.

Thanks to other who have helped me directly and indirectly, thank you.

My thanks to the Studentship Fund from NZDRI.

I would finally like to thank the members of my family: I great thank my older sister for her encouragement and assistance honestly, thank my parents for their support and thank Pinlei Lu – my son.

TABLE OF CONTENTS

Dedication	i
Abstract	i
Acknowledgments	ii
Table of Contents	v
List of Figures	ix
List of Tables	xiii
1.0 Introduction	1
2.0 Background theories and techniques	11
2.1 Pulse field gradient NMR method (PFG-NMR)	11
2.1.1 Basic theory of pulse field gradient NMR method	11
2.1.2 Droplet size application for NMR-minispec	19
2.1.3 Droplet size distribution	19
2.2 Confocal scanning laser microscopy (CSLM)	22
2.2.1 Basic theory of confocal scanning laser microscopy	22
2.2.2 Z-series experiment	26
3.0 Experimental methods and materials	28
3.1 Instrumentation	28
3.1.1 NMR spectrometers	28
3.1.2 Confocal scanning laser microscopy	28

3.2 Samples	29
3.3 Sample preparation	29
3.3.1 NMR samples	29
3.3.2 Confocal scanning laser microscopy (CSLM)	31
3.3.2.1 Dye preparation	31
3.3.2.2 Preparation of CSLM sample	31
3.4 Data analysis	31
4.0 Results and discussions	32
4.1 NMR measurements	32
4.1.1 Pulse sequence used in diffusion measurements	32
4.1.2 Choice of optimum measuring conditions	32
4.1.2.1 The delay time Δ between the field gradient pulses	32
4.1.2.2 τ null (τ_0)	33
4.1.2.3 Gradient strength (G)	35
4.1.3 Choice of water diffusion coefficient	39
4.1.3.1 Determinations of water self-diffusion coefficients	39
4.1.3.2 effect of choice of D on the water droplet size distribution	41
4.1.4 Sampling techniques	42
4.1.5 Distribution of water droplet size in commercial and experimental but	utters
	45
4.1.5.1 Distribution curves of water droplet sizes by volume	46
4.1.5.2 The distributions of water droplet sizes in experimental butters	
with different moisture contents	
48	
4.1.5.3 Distributions of water droplet sizes in butters made using diff	ferent
manufacturing techniques	50

vi

4.2 Confocal microscopy	52
4.2.1 The Sampling	52
4.2.1.1 Use of microscope slide in dyeing sample	52
4.2.1.2 Small cube of sample stained in a beaker	53
4.2.1.3 Uses of copper dish	56
4.2.2 Dyeing techniques	58
4.2.2.1 Comparisons between Nile Blue in glycerol and Nile Re	d in corn
oil	58
4.2.2.2 Nile Blue	59
4.2.2.3 Comparisons between Nile Blue in Milli-Q water and N	ile red in
propylene glycol	61
4.2.2.4 Butter samples	63
4.2.3 Choosing the magnifications of images	66
4.2.4 Z-series experiments	71
4.2.5 Analytical program of the droplet sizes and droplet numbers in e	mulsions
by computer	71
4.2.6 The distributions of water droplet numbers	75
4.2.7 The distributions of droplet volume	76
4.2.8 The measurements of moisture contents	78
4.3 Comparison between the results of the PFG-NMR method and the resu	lts of the
confocal scanning laser microscopy	81
4.3.1 Water droplet size by volume distributions	81
4.3.2 Irregular droplets	83
4.4 Comparison between the results of low resolution NMR and high r	esolution
NMR	

86

5.0	Conclusions and future works	87
6.0	References	90
7.0	Appendix	98
	Appendix 1. The Hahn spin-echo experiment and the Hahn spin-echo exp	periment
	with pulse field gradient	98
	Appendix 2. Self-diffusion coefficients	105
	Appendix 3. The images of samples from CSLM	110
	Appendix 4. Conversion of the droplet diameter	120

viii

List of Figures

Figure 1. General view of the fine structure of butter	2
Figure 2. Detailed views of the structure of butter	3
Figure 3. High resolution proton NMR spectra of butter	13
Figure 4. Precession of a magnetic moment μ	15
Figure 5. The pulsed field gradient spin-echo pulse sequence	16
Figure 6. The improved pulsed field gradient spin-echo pulse sequence	17
Figure 7. The recovery of Mt following inversion by the application of a 180°)
pulse at time t=0	17
Figure 8. Droplet size distributions for a log-normal distribution	20
Figure 9. Droplet size distribution expressed as the relative frequency vs the lr	ı d
	21
Figure 10. Optical arrangement of the confocal microscope	23
Figure 11. Diagram of the excitation beam and the reflected and fluorescent lig	ght
in an incident light confocal system	24
Figure 12. Optical scanning sectioning length as function of the numerical	
aperture.	25
Figure 13. Schematic diagram of the construction of a x-z images in an inverte	ed
microscope.	26
Figure 14. Serial confocal optical sections of a z-series through a butter	27
Figure 15. Butter sampling in NMR measurement	30
Figure 16. Butter sampling in CSLM exploration	31
Figure 17. The relationship between the spin-echo amplitude and the interval	
between two pulsed field gradients	33
Figure 18. The relationship between the echo height ratio and pfg width for	
MAR-1 margarine	37
Figure 19. The relationship between the echo height ratio and pfg width for	
DRI-24 butter	38

ix

Figure 20. The relationship between the echo height ratio and pfg width for	
STD-1 butter	38
Figure 21. Distribution curve of water droplet size in STD-1 butter	
using older sampling probe	42
Figure 22. The butter sampling probes	44
Figure 23. Distribution of water droplet size in STD-1 butter	
using new sample probe	45
Figure 24. Distribution curve of water droplet size by volume	
in STD-1 butter at 5 ^o C	46
Figure 25. Distribution curve of water droplet size by volume	
in DRI-24 butter at 5 ^o C	47
Figure 26. Distribution curve of water droplet size by volume	
in MAR-1 margarine at 5 ⁰ C	47
Figure 27. Distributions of water droplet sizes by volume	
in experimental butters with different moisture contents	48
Figure 28. The droplet distributions by volume of	
the SPE-1 and the SPE-2 butters with close moisture contents	51
Figure 29. The sampling technique of CSLM using a microscope slide	53
Figure 30. The microstructure of DRI-24 butter obtained from	
a sample prepared using a microscope slide	53
Figure 31. The microstructure of DRI-32 butter obtained from	
a sample prepared using a microscope slide	54
Figure 32. The microstructure of STD-1 butter obtained from	
a sample prepared by stained a cube of butter in a beaker	55
Figure 33. The microstructure of DRI-24 butter obtained from	
a sample prepared by stained a cube of butter in a beaker	55
Figure 34. The microstructure of STD-1 butter obtained using	
a sample prepared in a copper dish	56

х

Figure 35. The microstructure of DRI-24 butter obtained using	
a sample prepared in a copper dish	57
Figure 36. The microstructure of STD-1butter obtained from	
a sample prepared using a microscope slide	58
Figure 37. The microstructure of STD-1butter stained	
with Nile Blue in Milli-Q water	59
Figure 38. The microstructure of DRI-24 butter stained	
with Nile Blue in Milli-Q water	60
Figure 39. The microstructure of MAR-1 margarine stained	
with Nile Blue in Milli-Q water	60
Figure 40. The microstructure of MAR-1 margarine stained	
with Nile Red in propylene glycol	61
Figure 41. The microstructure of DRI-24 butter stained	
with Nile Red in propylene glycol	62
Figure 42. The microstructure of STD-1 butter stained	
with Nile Blue in Milli-Q water	62
Figure 43. The microstructure of STD-1 butter stained	
with Nile Red in propylene glycol (copper dish)	63
Figure 44. The microstructure of DRI-24 butter stained	
with Nile Red in propylene glycol (copper dish)	64
Figure 45. The microstructure of MAR-1 margarine stained	
with Nile Red in propylene glycol (copper dish)	64
Figure 46. The microstructure of SPE-1 butter stained	
with Nile Red in propylene glycol (copper dish)	65
Figure 47. The microstructure of SPE-2 butter stained	
with Nile Red in propylene glycol (copper dish)	65
Figure 48. The microstructure of SPE-1 butter with 16x magnification	67
Figure 49. The microstructure of SPE-1 butter with 40x magnification	67

Figure 50. The microstructure of SPE-1 butter with 63x magnification	67
Figure 51. The microstructure of SPE-2 butter with 16x magnification	68
Figure 52. The microstructure of SPE-2 butter with 40x magnification	68
Figure 53. The microstructure of SPE-2 butter with 63x magnification	68
Figure 54. The distribution of water droplet number in SPE-1 butter	
with different magnifications	69
Figure 55. The distribution of water droplet number in SPE-2 butter	
with different magnifications	70
Figure 56. The z-series experiment of SPE-1 butter	72
Figure 57. The z-series experiment of SPE-2 butter	73
Figure 58. The distribution of water droplet numbers	
in STD-1 butter by CSLM	75
Figure 59. The distribution of water droplet numbers	
in MAR-1 margarine by CSLM	76
Figure 60. The distribution of water droplet volume	
of STD-1 butter by CSLM	77
Figure 61. The distribution of water droplet volume	
in MAR-1 margarine by CSLM	78
Figure 62. The distribution of water droplets by volume	
in STD-1 butter obtained from PFG-NMR and CSLM	82
Figure 63. The distribution of water droplets by volume	
in MAR-1 margarine obtained from PFG-NMR and CSLM	82
Figure 64. The distributions of water droplet sizes of	
SPE-1 butter and SPE-2 butter by PFG-NMR method	84
Figure 65. The images of SPE-1 butter by CSLM	85
Figure 66. The images of SPE-2 butter by CSLM	85
Figure 67. The R vs δ distributions of STD-1 butter	
between low resolution NMR and high resolution NMR	87

List of Tables

Table 1. T_1 and T_2 results	34
Table 2. The distribution of water droplet size in STD-1 butter with different τ_0	35
Table 3. The water droplet size distributions by volume of margarine, experimental butter and commercial butter from R vs δ curves using two gradient amplitudes	36
Table 4. Diffusion coefficients in aqueous phase extracted from samples	40
Table 5. The distributions of water droplet sizes in MAR-1 using real aqueous phase to calibrate low instrument	41
Table 6. Distributions of water droplet sizes in butters by older sampler	43
Table 7. Distributions of water droplet sizes in butters by new sampler	44
Table 8. Moisture contents of NZDRI experimental butters	49
Table 9. Moisture contents of SPE-1 and SPE-2 butters	50
Table 10. Results of using VIPS to determine the droplet sizes and numbers of SPE-1 butter	74
Table 11. Moisture contents of SPE-1 and SPE-2 butters from CSLM	79
Table 12. Moisture contents of STD-1 butter and MAR-1 margarine	81

xiii