

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A CYTOGENETIC STUDY OF NEW ZEALAND NUCLEAR TEST VETERANS: THE COMET ASSAY

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Genetics at Massey University, Palmerston North, New Zealand

> Chad Joseph Johnson 2004

Between 1952 and 1958, forty thousand troops witnessed or assisted in the detonation of nuclear weapons in and around Australia and Christmas Island. Of these forty thousand troops there were 550 sailors from New Zealand; the remainder were mainly from Australia or Britain, together with a Fijian contingent. Since the end of this test series, the participants have maintained that they were exposed to radiation that has affected their health. The New Zealand test veterans say that their lifespan has been reduced by at least 10 years and there have been an unusually high number of genetic disorders among them and their children. The possible genetic effects of this radiation exposure have never been fully investigated.

One of the most popular techniques for detecting DNA damage is the single-cell gel electrophoresis assay (SCGE), also known as the COMET assay. The COMET assay was used throughout this study to determine if veterans of the Operation Grapple tests have long-term genetic effects as a result of their participation. The COMET assay measured three factors to determine the overall genetic damage in these veterans: the tail length; the tail moment; and the Olive tail moment. Only the tail length had a significant amount of difference after a comparison with a control group was conducted (P = 0.046). However, the mean genetic damage in these veterans was lower than that of the control group. It is unclear if this result is due to an anomaly in the data, or due to some other complex factor. An epidemiological analysis revealed a possible link between the mortality of these veterans and the number of weapons detonated.

The collection of these one hundred samples, not including re-collections, from several areas of New Zealand became a logistical nightmare. To minimise this problem a pilot study was also incorporated into this research to determine if blood samples could be cryopreserved for extended periods of time without an accumulation of genetic damage due to the freezing process. The COMET assay was also used to determine this damage. The cryopreservation of these samples induced extensive genetic damage. Only 7 from the total of 60 frozen samples were retrieved with a level of damage that was not significantly different from the original, unfrozen sample (P = > 0.050). It appears that the routine use of cryopreserved blood samples for cytogenetic testing is not possible at this time and further study is required.

* - ACKNOWLEDGEMENTS - *

An application was submitted to the human ethics committee for permission to use human subjects in this study. The application was considered and approved before research commenced. Copies of the letters of permission are included in Appendix One.

First and foremost, I would like to thank my research supervisor Dr. Al Rowland, for his tireless efforts in getting my project off the ground, and also for his moral support throughout. Without your input, humour, and help I would never have gotten as far as I have. Thank you.

Thank you to my family for their support throughout my studies.

I would also like to thank the following people for their respective contributions to this research:

Roy Sefton and the New Zealand Nuclear Test Veteran Association.

Liz Nickless, Mohammed Abdul Wahab, and Ruth Major for sharing their space and putting up with me.

Associate Professor John Podd, Judy Blakey, and Rebekah Jourdain for selecting the participants for this study and for sifting through the mountains of questionnaire data.

Ted Drawneek for his assistance with the statistical analysis of my results.

Tim White for fixing the bugs in my analysis software and saving me a lot of extra work.

Charlotte James, Trish MacLenachan, Vicki Scott, and Barbara Asmundson for letting me use your facilities and equipment, especially Vicki for drawing blood from me on a weekly basis in the earlier days (it didn't hurt most of the time).

And last but not least, thank you to Chris Kendrick and Kathryn Stowell for your advice with my protocols.

★ - ABBREVIATIONS USED IN THIS REPORT - ★

α - Alpha β – Beta BrdU - 5-bromo-2-deoxy-uridine Bq - Becquerel C - Control group Ca - Calcium CA - Chromosome Aberration CASP - COMET Assay Software Project CDC - Centre for Disease Control Ci - Curie Cm - Centimetres ⁶⁰Co - Cobolt-60 ¹³⁷Cs - Cesium-137 CT - Comet Threshold DAPI - 4', 6-Diamidino-2-phenylindole DMSO - Dimethylsulfoxide DNA - Deoxyribose Nucleic Acid DPS - Disintegrations Per Second DSB - Double-Strand Breakages E - Experimental (nuclear test veteran) group EDTA - Ethylenediamine Tetraacetic Acid EMF - Electromagnetic Field EPA - U.S Environmental Protection Agency Et al. - Latin, and others FCS - Foetal Calf Serum FISH - Fluorescence In Situ Hybridisation γ - Gamma G - Grams GHz - Gigahertz Gy - Gray H⁺ - Proton

²H - Deuterium ³H - Tritium H₂O - Water H₂O₂ - Hydrogen Peroxide HCT - Head Centre Threshold HT - Head Threshold ¹³¹I - Iodine-131 IDDM - Insulin Dependent Diabetes Mellitus ¹⁹²Ir - Iridium-192 KT - Kilotons L - Litres LET - Low Linear Energy Transfer Leuk - Leukocyte LMAgarose - Low-Melting-point Agarose MCi - Microcurie µL - Microlitres um - Micrometers µM - Molar concentration in micromoles/litre M - Molar concentration in moles/litre MA - Milliamperes Mb - Megabytes Mci - Millicurie Mg - Milligrams Ml - Millilitres Mm - Millimetres MN assay- Micronucleus assay MqH₂0 - Milli-Q water Ms - Milliseconds MSv - Millisieverts MT - Megatons NaCl - Sodium Chloride NaOH - Sodium Hydroxide Neutr - Neutrophil NIDDM - Non-insulin Dependent Diabetes Mellitus Nm - Nanometres NMAgarose - Normal Melting-point Agarose N or No. - Number NTV - Nuclear Test Veterans NZNTV - New Zealand Nuclear Test Veterans NZNTVA - New Zealand Nuclear Test Veterans Association OTM - Olive Tail Moment P - HMNZS Pukaki PBMC - Peripheral Blood Mononucleate Cells PBS - Phosphate Buffered Saline PHA - Phytohaemagglutinin R - HMNZS Rotoiti R.N.Z.N - Royal New Zealand Navy **ROS** - Reactive Oxygen Species **RPMI - Roswell Park Memorial Institute** SCE - Sister Chromatid Exchange SCGE - Single Cell Gel Electrophoresis SD - Standard Deviation SE - Standard Error SSB - Single-Strand Breakage Ssp. - Sub-species ⁸⁵Sr - Strontium-85 ⁸⁹Sr - Strontium-89 ⁹⁰Sr - Strontium-90 Std. Dev - Standard Deviation TL - Tail Length TM - Tail Moment ²³⁵U - Uranium-235 V/v - Volume per volume WU - U excitation (wide band) filter x g - Gravities ⁹⁰Y - Yttrium-90 ⁹⁰Z - Zirconium-90

- CONTENTS PAGE -

vii

Page

TITLE PAGE			i	
ABSTRACT			ii	
ACKNOWLEDGEMENTS			iii	
ABBREVIATIONS USED IN THIS REPORT			iv	
CONTENTS			vii	
LIST OF FIGURES				xi
LIST OF TABLES				xiii
CH	APTER	I: INTROL	DUCTION	1
1.1	1.1 NUCLEAR WEAPONS AND NUCLEAR TEST VETERANS			1
	1.1.1	OPERATI	ON GRAPPLE	1
	1.1.2	THE CUR	RENT STUDY	4
		1.1.1.2	Previous Studies Of Nuclear Test Veterans	5
	1.1.3 NUCLEAR RADIATION			8
		1.1.3.1	Studies Involving Individuals Exposed To Radiation	8
		1.1.3.2	Nuclear Fallout	10
	1.1.4	DNA ION	IZATION, EXCITATION, AND OXIDATION	11
	1.1.5	RADIONUCLIDES PRESENT IN NUCLEAR DETONATIONS		
	1.1.6	5 THE EFFECTS OF STRONTIUM-90		
		1.1.7.1	Cytogenetic Evidence For The Effects Of Strontium-90	17
1.2	ANALY	SIS OF GE	NETIC DAMAGE	18
	1.2.1	CYTOGE	NETIC TESTS USED IN THE CURRENT STUDY	19
		1.2.1.1	The COMET Assay	19
	1.2.2	CONFOU	NDING FACTORS	21
		1.2.2.1	Smoking	22
		1.2.2.2	Aging	23
		1.2.2.3	Gender	24
	1.2.3	THE COM	IET ASSAY AND IONISING RADIATION	24
1.3	CRYO	CRYOPRESERVATION OF HUMAN BLOOD CELLS		

viii

	1.3.1	CRYOPR	ESERVATION PILOT STUDY	28
	1.3.2	CRYOPR	ESERVATION-INDUCED DNA DAMAGE	29
	1.3.3	ANALYS	IS OF CRYOPRESERVATION-INDUCED DAMAGE	30
1.4	OBJEC'	TIVES OF	THIS THESIS	31
CH	APTER 2	: MATER	IALS AND METHODS	32
2.1	MATER	RIALS		32
	2.1.1	AGAROSE GELS		
	2.1.2	CELL PREPARATION MEDIA		
	2.1.3	DNA STAINS		
	2.1.4	MOLECULAR BIOLOGY BUFFERS AND SOLUTIONS		
	2.1.5	COMET ASSAY MATERIALS		
	2.1.6	CELL CULTURE MEDIA		37
	2.1.7	CRYOPRESERVATION MEDIA		37
2.2	METHO	THODS		
	2.2.1	EXPERIMENTAL DESIGN		38
	2.2.2	SAMPLE HANDLING		39
		2.2.2.1	Lymphocyte Preparation	39
		2.2.2.2	Lymphocyte Concentration And Viability	41
		2.2.2.3	COMET Assay Positive Controls	43
	2.2.3	SLIDE PF	REPARATION	43
		2.2.3.1	CometSlide [™] Method	43
		2.2.3.2	Pre-treatment Method	44
	2.2.4	THE CON	MET ASSAY	45
		2.2.4.1	Lysis Solution	46
		2.2.4.2	Alkaline Solution	47
		2.2.4.3	Alkaline Electrophoresis	48
	2.2.5	SLIDE ANALYSIS		49
		2.2.5.1	Qualitative Method	50
		2.2.5.2	Quantitative Method	53
	2.2.6	DETECTION OF DNA REPAIR		56
	2.2.7	CRYOPRESERVATION		57
		2.2.7.1	Cell Freezing	57
		2.2.7.2	Cell Retrieval	58

CHAPTER 3: RESULTS

CH	APTER 3	3: RESULT	TS	59
3.1	GENETIC DAMAGE MEASURED BY THE COMET ASSAY			59
	3.1.1	MEASUREMENT OF IN VITRO OXIDATIVE DAMAGE		
	3.1.2	REPAIR (OF OXIDATIVE DNA DAMAGE	64
3.2	DNA DAMAGE IN NUCLEAR TEST VETERANS			66
	3.2.1 EPIDEMIOLOGICAL ANALYSIS			
		3.2.1.1	Mortality Analysis	66
		3.2.1.2	Analysis Of Questionnaire data	70
		3.2.1.3	Analysis Of Blood Cell Data	71
	3.3.2	CYTOGE	NETIC STUDY	72
		3.3.2.1	Genetic Damage In The Control And Experimental Groups	73
		3.3.2.2	Differences In Genetic Damage Between the Two Ships	74
3.3	CRYOP	RESERVA	TION PILOT STUDY	76
CH	APTER 4	: DISCUS	SION	81
4.1	PRELIN	IINARY EX	<u>KPERIMENTS</u>	81
	4.1.1	MEASUR	EMENT OF IN VITRO OXIDATIVE DAMAGE	81
	4.1.2	ANALYS	IS OF DNA REPAIR	82
	4.1.3	CONCLU	SIONS	83
4.2	NUCLEAR TEST VETERANS STUDY			84
	4.2.1	EPIDEMI	OLOGY STUDY	84
		4.2.1.1	Mortality Analysis	84
		4.2.1.2	Questionnaire Data	86
		4.2.1.3	Blood Cell Data	87
	4.2.2	CYTOGE	NETIC STUDY	88
	4.2.3	CONCLU	SIONS	91
4.3	CRYOPRESERVATION			92
	4.3.1	CRYOPR	ESERVATION PILOT STUDY	92
	4.3.2	CONCLU	SIONS	93
CH	APTER 5	5: FUTURE	E WORK	94
5.1	THE CC	MET ASSA	AY METHODOLOGY	94
5.2	NUCLE	AR TEST V	/ETERANS	95
	5.2.1	THE CUR	ENT STUDY	95

	5.2.2	DOSIM	IETRY OF BONES	95	
	5.2.3	ANAL	YSIS OF OFFSPRING	96	
	5.2.4	MORT	ALITY ANALYSIS	97	
5.3	CRYOP	ESERV	ATION	97	
REI	REFERENCES 9				
API	PENDICI	ES		109	
APF	PENDIX I	[;	Letters Of Approval From The Human Ethics Committee	110	
APF	PENDIX I	II:	Random Microscope Coordinates	114	
APF	PENDIX I	III:	CASP Software Operation	117	
APF	PENDIX I	V:	Freezing Schedule	123	
APF	PENDIX	V:	Cytogenetic Tests	126	
APF	PENDIX	VI:	Nuclear Weapon Principles	131	
APF	PENDIX V	VII:	Mechanisms Of Radioactive Decay	134	
APF	PENDIX V	VIII:	Questionnaire Sent To All Participants During The Selection Of Control And Experimental Groups	136	
APF	PENDIX I	X:	Data For Individual NTVs – See Attached CD		
APF	PENDIX X	X:	Individual Cryopreservation Samples – See Attached CD		
APF	PENDIX X	XI:	Oxidative Damage Assays – See Attached CD		
APF	PENDIX 2	XII:	DNA Repair Assays – See Attached CD		

х

★ - FIGURES USED IN THIS REPORT - ★

Page

Figure 1.1.	The geographic locations of Malden Island and Christmas Island.	2
Figure 1.2.	False colour, confocal microscopy image of a lymphocyte that has	
	been subjected to the COMET assay and stained with SYBR Green TM .	19
Figure 2.1.	Diagram illustrating the separated layers after the centrifugation of	
	whole blood using a Ficoll concentration gradient.	40
Figure 2.2.	Diagram representing the dimensions of a haemocytometer counting	
	chamber.	41
Figure 2.3.	A Trevigen brand CometSlide TM that was used in the initial stages of	
	this study. Each slide has 2 sample wells.	43
Figure 2.4.	Image illustrating how the gel layers were formed using the	
	pre-treatment method. Image not to scale.	45
Figure 2.5.	Figure taken from Tice et al (2000) outlining the basic steps of the	
	COMET assay.	46
Figure 2.6.	Image indicating the placement of microscope slides in electrophoresis	
	tank.	49
Figure 2.7.	Image illustrating the points where the tail length of each comet was	
	taken. Image obtained from www.cometassay.com.	51
Figure 2.8.	Chart illustrating the different morphologies that were used when	
	assigning a grade to each lymphocyte. The cells have been stained with	
	SYBR TM Green stain. This image is a based on a similar image found at	
	www.cometassay.com.	52
Figure 2.9.	Image capturing hardware used during the current study.	53
Figure 2.10.	Orientation of cell (directed left to right) for analysis by the CASP	
	software.	54
Figure 2.11.	Image outlining 7 of the 13 different variables that are measured by the	
	CASP TM software.	56
Figure 3.1.	Graph of oxidative DNA damage induced by four concentrations of	
	H_2O_2 , as measured by the COMET assay.	60

Figure 3.2.	Graph of oxidative DNA damage induced by four concentrations of	
	H_2O_2 (20 minute exposure), as measured by the COMET assay.	62
Figure 3.3.	Graph of oxidative DNA damage induced by four concentrations	
	of H_2O_2 (5 minute exposure), as measured by the COMET assay.	63
Figure 3.4.	Graph of DNA repair measured by the COMET assay over 24 hours.	65
Figure 3.5.	Combined mortality rates of crewman from the HMNZS Pukaki and	
	the HMNZS Rotoiti based on the number of detonations witnessed.	68
Figure 3.6.	Mortality rates of crewmembers of the HMNZS Pukaki based on the	
	number of detonations witnessed by each individual.	68
Figure 3.7.	Mortality rates of crewmembers of the HMNZS Rotoiti based on the	
	number of detonations witnessed by each individual.	69
Figure 3.8.	The overall mortality rates for the crews of the Pukaki and the Rotoiti.	70
Figure 3.9.	A comparison of the three main cell types that can be affected by	72
	radiation.	
Figure 3.10.	Graph showing a comparison of the mean genetic damage in control	
	and experimental groups.	74
Figure 3.11.	Graph showing a comparison of the mean genetic damage in Pukaki	
	and Rotoiti groups.	76
Figure 3.12.	Graph showing the mean levels of genetic damage of cryopreserved	
	samples after at 3 sampling periods: 2 months, 4 months, and 7 months.	78
Figure 3.13.	Graph showing the changing viabilities of retrieved cryopreserved cells.	78

xii

★ - TABLES USED IN THIS REPORT - ★

Page

Table 1.1.	The location and yields of each Operation Grapple weapon, and the	
	position of each ship at the time of each weapon detonation	
	(Crawford, 1989).	3
Table 1.2.	Approximate yields of the principal nuclides per megaton of fission.	13
Table 3.1.	Oxidative DNA damage induced by a 20-minute exposure to different	
	concentrations of H ₂ O ₂ , as measured by the COMET assay	
	(qualitatively).	60
Table 3.2.	Oxidative DNA damage induced by a 20-minute exposure to different	
	concentrations of H ₂ O ₂ , as measured by the COMET assay	
	(quantitatively).	61
Table 3.3.	Oxidative damage induced in cells by a 5-minute exposure to different	
	concentrations of H_2O_2 , as measured by the COMET assay	
	(quantitatively).	63
Table 3.4.	Repair of oxidative DNA damage over 24 hours, as measured by the	
	COMET assay.	65
Table 3.5.	The Mortality Of NTVs Compared To The Number Of Detonations	
	witnessed By Each Individual.	67
Table 3.6.	The collective mortality rate data for the crews of each ship that was	
	involved in Operation Grapple.	69
Table 3.7.	Participant questionnaire data for 4 of the main confounding factors.	71
Table 3.8.	Mean WBC counts for control and experimental groups.	71
Table 3.9.	The mean COMET assay data for 50 experimental and 48 control	
	participants involved in the current study.	74
Table 3.10.	Mean COMET assay and questionnaire data of the experimental	
	participants from the Pukaki and the Rotoiti involved in the current	
	study.	75
Table 3.11.	Pooled statistical data for tail length, tail moment, and olive tail	
	moment for 20 samples in cryopreservation study.	77

Table 3.12.P values of the means for 20 cryopreserved samples. Values indicating
no significant difference to the original sample (P = >0.050) are
highlighted.

80