

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE EFFECTS OF NITRATE NITROGEN AND PHOSPHATE ON THE

NODULATION AND NITROGEN FIXATION

OF WHITE CLOVER (TRIFOLIUM REPENS L.)

A thesis

presented in partial fulfilment of the requirement for the degree of Master of Agricultural Science

at

Massey University

Ian Robert Pierson Fillery

٠,

SUMMARY

The effect of nitrate nitrogen and phosphate on nodulation, nitrogen fixation and growth of white clover (<u>Trifolium repens</u> L.) plants was evaluated in a series of 'growth cabinet' and glasshouse experiments. Plants of a different age and nodulation status were used.

Nodule dry weight, nodule number and the average nodule weight declined on plants grown in solution cultures containing low concentrations of nitrate nitrogen (0.25 - 0.5mM). The nitrogen fixing activity of plants was also depressed by low concentrations of nitrate nitrogen, in experiments conducted during the winter and spring, but a stimulation in activity was observed in plants grown during the summer. The nature of the response was dependent on the growth response of the host plant to nitrate nitrogen. High concentrations of nitrate nitrogen (4mM) markedly reduced nodulation and nitrogen fixation in all experiments.

Phosphate increased the total nodule weight, nodule number and the nitrogen fixing activity of white clover plants, and several interactions between nitrate nitrogen and phosphate for nodulation and nitrogen fixation were obtained:

(a) Nodule weight, nodule number and the nitrogen fixing activity were more severely reduced by low concentrations of nitrate nitrogen at low phosphate levels than at higher levels.

(b) In one experiment a stimulation in nitrogen fixing activity occurred at the low nitrate nitrogen concentration and the highest phosphate level.

(c) At high levels of nitrate nitrogen no increase in nitrogen fixing activity was observed when higher rates of phosphate were applied.

The effect of nitrate nitrogen and phosphate on the soluble and reserve carbohydrate content, and percent total nitrogen and phosphate in the host plant and nodule material was evaluated and the relationship of the carbohydrate to nitrogen ratio with nitrogen fixing activity determined. The ability of this ratio to explain changes in nitrogen fixing activity is discussed.

ACKNOWLEDGEMENTS

I would like to thank Mr A.G. Robertson (Agronomy Department, Massey University) for his assistance and interest in this work.

I would also like to acknowledge the assistance given to me by the following:-

Professor R.J. Townsley for statistical analysis and Mr S. Clarkson for writing the computer programmes for the statistical analysis and for placing the data through the computer.

Dr P.G. Roughan, Dr R. Haselmore and Mr I.J. Warrington of the Plant Physiology Division D.S.I.R. Palmerston North for permission to use the equipment in their laboratories and for the use of analytical procedures for determination of soluble sugars and starch.

Mr R. Scott (Invermay Research Station) for help with the gas chromatogram technique.

Dr R.H. Jackman (Grasslands Division D.S.I.R.) for permission to use an autoanalyser for total nitrogen and phosphate determinations.

Professor J.K. Syers (Soil Science Department) and Mr M. Mannering (Botany Department) for supplying many items of equipment.

I thank all those who assisted in the production of this thesis, and in particular Mrs E. Lynch for the typing. I would like to thank those who assisted me from time to time during the course of the Experiments.

Finally, I thank my wife, Louise for the invaluable assistance given throughout this study.

TABLE OF CONTENTS

List of F	igures, Tables and Plates	
Introduct	ion	1
Chapter I	keview of Literature	
1	Nodulation	2
2	Nitrogen Fixation	16
3	Effect of Combined Nitrogen and Phosphate	
	on Nodulation and Nitrogen Fixation	33
4	Assimilation and Transport of Nitrogen	
	in Nodulated Legumes	37
Chapter II	I Experimental	
1.1	Introduction	40
1.2	Materials: Growth Cabinet Experiments	40
1.3	Experimental	42
1.4	Conduct of Experiments 1 and 2	46
1.5	Preparation of Material and	
	Method of Analysis	46
2.1	Materials: Glasshouse Experiments	47
2.2	Experimental	52
2.3	Conduct of Glasshouse Experiments	54
2.4	Preparation of Material and analysis	57
Chapter I	II Results	
1	Growth Roam Experiments	61
1.1	Experiment 1	61
1.2	Experiment 2	63
2	Glasshouse Experiments	66
2.2	Experiment 3	66
2.3	Experiment 4	84
2.4	Experiment 5	101
Chapter I	V Discussion	
1	Nodulation	112
2	Nitrogen Fixation	117
3	Plant Growth	120

4 The carbohydrate - nitrogen ratio 127

Conclusion

Bibliography

Appendices

LIST OF FIGURES, TABLES AND PLATES

Figures

1	Possible pathways for Biological Nitrogen F.	23
2	Scheme for nitrogenase and its reaction	
	based on the electron-activation two-site	
	hypothesis	26
3	Scheme illustrating the main feactures of	
	the assimilatory and transport systems for	
	nitrogen in the field pea.	38
4	Nodule number per seedling root	64
5	Dry weight of seedling top	64
6	Nodule number per plant	67
7	Nodule dry weight per plant	67
8	Average nodule weight	67
9	Rate of ethylene produced per plant	
	per hour	70
10	Rate of ethylene produced per mg nodule	
	(dry weight per hour)	70
11	Total plant dry weight	73
12	Top dry weight	73
13	Root dry weight	74
14	Percent phosphate in Top (A) Root (B)	
	Nodule (C) material	78
15	Nodule dry weight per plant	86
16	Total plant weight	86
17	Rate of ethylene produced per plant	
	per hour	87
18	Rate of ethylene produced per mg nodule	
	(dry weight per hour)	87
19	Dry weight of root material	90

		page
20	Dry weight of top material	90
21A	Percent total nitrogen in top material	93
21B	Percent total nitrogen in root material	93
22	Percent total phosphate in top material (A)	
	and root material (B)	96
23	Percent total phosphate in nodule material	97
24	Percent soluble sugars in nodule material	97
26	Rate ethylene produced per plant per hour	103
27	Rate of ethylene produced per mg nodule (dry	
	weight) per hour	103
28	Total nodule dry weight	104
29	Total plant dry weight	104
30	Top dry weight	105
31	Root dry weight	105
32	Rate of ethylene produced per plant	
	per hour	107
33	Total plant dry weight	108
34	Dry weight top material	109
35	Dry weight of root and nodule material	110

Tables

1	Nodule number per seedling	62
2	Seedling top weight (mg)	62
3	Percent total nitrogen in top material	76
4	Percent total nitrogen in root material	76
5	Percent total nitrogen in nodule material	76
6	Percent soluble sugars in plant top	82
7	Percent soluble sugars in plant root	82
8	Percent starch in top material	83
9	Percent starch in root material	83
12	Percent total nitrogen in nodule material	92A
13	Percent soluble sugars in top material	94
14	Percent soluble sugars in root material	94
15	Percent total starch in top material	100
16	Percent total starch in root material	100
17	Percent total starch in nodule material	100
18	Percent total nitrogen in top, root and nodule	106A
19	Top to root ratio Experiment 3	111A
20	Top to root ratio Experiment 6	111A

Plates		page
1	'Growth Cabinet'	43
2	Close up view of a pot	44
3	Plant material from Experiment 3 which was discarded after wilting was observed	56
4	Plant material from Experiment 3 showing toxic effect of high levels of phosphate (A)	60
5	Comparison of plant material from Experiment 3.	60

INTRODUCTION

It is a well established fact that the presence of nitrate ions can depress nodule development on legume roots, but recent studies in Queensland (Gates, 1970) have shown that this sensitivity can be ameliorated if phosphate levels are maintained at a high rate. Gates studies involved tropical legumes and their appropriate rhizobial symbionts, and this study was conducted to ascertain whether a similar situation obtains with a temperate species like Trifolium repens (White Clover).

Quantitiative information on the effect of nitrate nitrogen and phosphate on nitrogen fixing activity in white clover was also lacking, and an attempt was made to rectify this deficiency by examining the changes in rate of ethylene production per plant or mg nodule (dry weight) with the application of nitrate nitrogen and higher rates of phosphate.