

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

RECONSTRUCTING THE COMPLEX HISTORY OF A SMALL-VOLUME BASALTIC VOLCANO (NGATUTURA VOLCANIC FIELD, NEW ZEALAND): THE ROLE OF SUBSURFACE PROCESSES AND IMPLICATIONS FOR DIATREME FORMATION.

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Earth Science

at Massey University, Palmerston North, New Zealand.

Rickus van Niekerk

2016

ABSTRACT

Monogenetic volcanism is very common on continents and often occur very close to civilisation. Limiting the ability of volcanologists to predict the location and extent of future eruptions at monogenetic volcanic fields is the lack of knowledge about subsurface processes at small basaltic volcanoes. This research aims to utilize exceptional exposures of subsurface volcanic structures at a coastal section in the upper North Island of New Zealand to investigate the role of subsurface processes in the development of a small basaltic volcano. Exposures include dykes, lava flows, peperite and hyaloclastite deposits, a lava pond, and diatreme. Along with detailed mapping, K-Ar age dates reveal the complex history of the Ngatutura Bay Volcanics as syn-sedimentary volcanism in a shallow marine environment. Volcanism at Ngatutura Bay is shown to have occurred in two phases, the first around 3.34-3.22 Ma, and the second at c. 1.81-1.72 Ma. Subsurface processes documented include magma-country rock interactions, the role of groundwater, magma ascent, and thermal alteration of country rock. The importance of tectonics and rock structure at small basaltic centres is also demonstrated. Moreover, deposits of the diatreme were analysed for grain size and lithic componentry. The local stratigraphy is composed of welldefined lithologies, each with unique textural and visual properties, enabling the identification of lithics in the diatreme. The diatreme deposits are described as five distinct lithofacies, and together with grain size and componentry data, the series of events by which the diatreme formed is constrained. A conceptual model is drawn for the formation of the diatreme, which is compared to current models and theories.

ACKNOWLEDGEMENTS

I would like to thank the following people for their prodigious efforts in assisting with my research. Without this team I simply would not have been able to produce even part of a thesis. A heartfelt thanks to each of you.

Gert Lube, Karoly Németh – As my supervisors you have guided me through each step of the way. Your wisdom and knowledge have helped to vastly improve all of my ideas. Thank you for your enthusiasm and patience.

Bob Stewart, Clel Wallace – As veteran researchers you have tirelessly shared with me your vast reservoir of knowledge. Thank you for all the inspiring and insightful conversations and help along the way. Bob, thank you also for accompanying me in the field and for your assistance in the XRD lab.

Anja Moebis – I have thoroughly enjoyed all the hours I spent in your lab. You have taught me so much. Thank you for your hard work maintaining and setting up equipment, particularly the microprobe, which took up hours of your time for many days.

Peter Lewis – Thank you for keeping and maintaining the microprobe. I have been told that you are a miracle worker.

Eric Breard – I don't have the words to thank you for your efforts in the field. You have climbed to heights that no-one thought possible, and retrieved samples from places where no human has ever been. You should be very proud of what you have done, although I'd strongly advise not to do it again!

Goldie Walker – You deserve the title of field technician. Abseiling from a fence post was terrifying, but you managed to keep me safe. Thank you for your hard work in doing so.

Szabolcs Kósik, Gabor Kereszturi – Thank you both for accompanying me in the field. You have worked unremittingly to gather samples and take thousands of very valuable photographs.

TABLE OF CONTENTS

ABS	[RAC]	Γ	I
Аск	NOWI	LEDGEMENTS	II
TAB	LE OF	CONTENTS	III
List	OF FI	GURES	VI
List	of t <i>a</i>	ABLES	IX
Снар	TER Î	1 – Introducing the Research	1
1.1	Int	RODUCTION	1
1.2	Овј	ECTIVE AND STRUCTURE	4
1.3	Thi	e study area: Ngatutura Point	7
1.3	3.1	GEOLOGIC SETTING	7
1.3	3.2	NGATUTURA BAY VOLCANICS AT A GLANCE	14
Снар	TER 2	2 – The Literature	18
2.1	Sub	SURFACE PROCESSES IN MONOGENETIC VOLCANISM	18
2.1	.1	MAGMA FRAGMENTATION	
2.1	.2	SUBMARINE VOLCANIC DEPOSITS	29
2.1	.3	PLUMBING SYSTEMS OF MONOGENETIC VOLCANOES	34
2.1	.4	SUBSURFACE CONTROLS ON VOLCANO MORPHOLOGY	
2.2	Thi	E ENIGMA OF DIATREMES	
2.2	2.1	WHAT ARE DIATREMES?	
2.2	2.2	MECHANISMS OF DIATREME FORMATION	
2.2	2.3	MAGMA-COUNTRY ROCK INTERACTIONS	45
2.2	2.4	SEDIMENTATION IN DIATREMES	46
2.3	SUN	MMARY	

Chapter 3 – Methods			
3.1	3.1 INTRODUCTION		
3.2	Field work	49	
3.3	Componentry & Grain size analysis	51	
3.1.	1 LITHICS OF THE JURASSIC		
3.1.	2 LITHICS OF THE OLIGOCENE		
3.1.	3 LITHICS OF THE MIOCENE		
3.1.	4 LITHICS OF THE PLIOCENE		
3.4	THERMAL ANALYSIS	57	
3.5	ANALYSIS OF THERMALLY ALTERED SAMPLES	60	
3.6	MICROPROBE ANALYSIS AND K-AR DATING	60	
CHAPT 4.1 In	ter 4 – Results	61	
4.2 Pi	HYSICAL VOLCANOLOGY	61	
4.2.	1 DYKES AND THEIR RELATIONSHIP WITH FAULTS	62	
4.2.	2 EFFUSIVE VOLCANISM	64	
4.2.	3 VOLCANICLASTIC DEPOSITS		
4.2.	4 THE NGATUTURA DIATREME		
4.3 T	HE DIATREME: FACIES ARCHITECTURE AND COMPONENTRY	69	
4.3.	1 FACIES DESCRIPTIONS	69	
4.3.	2 COMPONENTRY		
4.3.	3 GRAIN SIZE ANALYSIS		
4.4 THERMAL ALTERATION OF COUNTRY ROCKS			
4.4.	1 CALCIUM CARBONATE CONTENT	94	
4.4.	2 MINERALOGICAL CHANGES	97	
4.5 G	EOCHEMISTRY OF THE NGATUTURA BASALTS	98	

4.5.1 MINERALOGY	
4.5.2 OLIVINE GEOCHEMISTRY	
4.6 K-Ar Dating	
CHAPTER 5 – DISCUSSION	
5.1 PALEOENVIRONMENTAL RECONSTRUCTION	105
5.1.1 K-AR DATES: AN APPRAISAL	105
5.1.2 VOLCANIC STRATIGRAPHY OF NGATUTURA BAY	
5.2 Subsurface processes & Volcano development	110
5.3 Formation of the diatreme	114
5.3.1 The growth of a diatreme	114
5.3.3 Comparing current models & theories	
Conclusions	124
References	

LIST OF FIGURES

Figure 1.1 – Location of the Ngatutura Volcanic Field
Figure 1.2 – The lithostratigraphy at Ngatutura Bay12
Figure 1.3 – Ngatutura Point lava flows14
Figure 1.4 – Dyke B with peperitic margin15
Figure 1.5 – Volcaniclastic debris flow16
Figure 1.6 – The Ngatutura Diatreme17
Figure 2.1 – The conversion of thermal energy to explosive kinetic energy (Wohletz, 1983)
Figure 2.2 – The stress wave fragmentation model (Wohletz, 1983)24
Figure 2.3 – The fluid instability model (Wohletz, 1983)25
Figure 2.4 – The development of small basaltic volcanoes: internal and external controls (Kereszturi & Németh, 2013)
Figure 2.5 – Schematic cross section of a typical diatreme (White & Ross, 2011)40
Figure 2.6 – Diatreme formation according to the Lorenz model (Lorenz, 1986)41
Figure 2.7 – Diatreme formation according to the Valentine & White model (Valentine & White, 2012)
Figure 3.1 – Sample locations at Ngatutura Bay50
Figure 3.2 – Jurassic-age lithics
Figure 3.3 – Oligocene-age lithics55
Figure 3.4 – Diatreme deposit containing Oligocene- and Miocene-age lithics56
Figure 3.5 – Miocene-age lithics
Figure 3.6 – Diatreme deposit containing Pliocene-age lithics

Figure 4.1 - The volcanic features of Ngatutura Bay, and the country rock stratigraphy
Figure 4.2 – Dyke A and its relationship with a fault64
Figure 4.3 – Dyke-and-sill structure65
Figure 4.4 – Peperitic margin at Dyke A66
Figure 4.5 – Peperite at Dyke B67
Figure 4.6 – The diatreme and its tuff ring remnant
Figure 4.7 – Facies architecture of the diatreme (northern wall)71
Figure 4.8 – Facies architecture of the diatreme (central view)73
Figure 4.9 – Facies architecture of the diatreme (southern wall)74
Figure 4.10 – Type 1 diatreme deposit75
Figure 4.11 – Type 2 diatreme deposit76
Figure 4.12 – Type 3 diatreme deposit77
Figure 4.13 – Type 4 diatreme deposit
Figure 4.14 – Type 5 diatreme deposit79
Figure 4.15 – Type 6 diatreme deposit80
Figure 4.16 – Water escape structures in lower diatreme deposits80
Figure 4.17 – Raft of rotated beds in the central diatreme81
Figure 4.18 – Lithic componentry of the diatreme
Figure 4.19 – Vertical abundance of lithic components in the diatreme
Figure 4.20 – Grain size distributions of diatreme deposits and lithic populations89
Figure 4.21 – Cumulative grain size distributions of diatreme deposits91
Figure 4.22 – Volcaniclastic rock classification of diatreme deposits

Figure 4.23 – Ratios of fine to coarse ash and block to lapilli size clasts of diatreme
deposits93
Figure 4.24 – BSE images of thermally altered Carter Siltstone96
Figure 4.25 – Clinopyroxene classification diagram for the Ngatutura Basalts99
Figure 4.26 – Plagioclase classification diagram for the Ngatutura Basalts101
Figure 4.27 – Olivine geochemistry of the Ngatutura Basalts: CaO vs Fo102
Figure 4.28 – K-Ar dates obtained for the Ngatutura Basalts104
Figure 5.1 – The formation of the Ngatutura Diatreme117

LIST OF TABLES

Table 1.1 – Selected examples of continental volcanic fields	7
Table 4.1 – Abundance of lithic components in the diatreme	82
Table 4.2 – Grain size analysis of diatreme deposits	88
Table 4.3 - Percentage of calcium carbonate consumed in HCL titrations	95
Table 4.4 – Representative chemical compositions of olivine crystals: Ngatutur Basalts	ra Bay 100
Table 4.5 – K-Ar determinations for Ngatutura Bay Volcanics	103
Table 5.1 – K-Ar ages of the Ngatutura Volcanic Field	107