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Abstract 

Soil carbon sequestration can help mitigate climate change and soil carbon contributes to many of 

the ecosystem services provided by the soil; thus soil carbon contributes to the sustainability of food 

production systems. However, changes in soil carbon are difficult and costly to measure due to two 

constraining characteristics: the spatial variability of the stocks as well as the typically small changes 

in carbon stocks over time. Consequently, environmental assessment tools such as Life Cycle 

Assessment (LCA) and carbon footprinting (CF) generally exclude the changes in soil carbon stocks 

from their analyses. Yet global supermarket chains use the results from these tools to inform 

consumers about greener products.  

In New Zealand (NZ), production of horticultural products such as apples is very focussed on export 

markets. Therefore, if it can be demonstrated that the production of New Zealand apples maintains 

or increases the carbon stock of the orchard soil and above-ground biomass, this could lead to a 

reduced net CF and might enhance access to prime retailers’ shelves in major export markets. 

The main aims of this research were (a) to develop a practical method for measuring a statistically 

significant and powerful change in the soil-carbon stock of an apple orchard block in New Zealand, 

and (b) to assess a method to estimate the standing woody biomass carbon stock in apple orchards, 

in order to provide reliable data for the CF of NZ apples. Since there are no data available, this 

research sought to quantify the changes in soil-carbon stocks in apple orchards by means of a 

chrono-sequence. 

A review of LCA and CF case studies accounting for changes in soil-carbon identified the need to 

focus on collecting deep, site specific, geo-localised and time-dependent soil-carbon data, as well as 

communicating its variability and statistical uncertainty for interpretation and transparency of LCA 

and CF results. Therefore, in a first step to develop a protocol for quantifying the carbon stocks in 

the soil, a four-year-old apple orchard block was intensively sampled to one meter depth to measure 

the soil-carbon stock and the spatial patterns. It was found that the soil-carbon stock was influenced 
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by tree planting pattern, and the minimum sampling requirements were determined to detect, from 

sampling every 20 years, a change of the mean (175.1± 10.8 t C/ha) of 10 % due to the spatial and 

temporal characteristics of soil carbon. This required sampling nine sites in a systematic grid in the 

orchard block, with four pooled samples per site evenly distributed between and outside the wheel 

tracks, at a total cost of NZ$1,590 per sampling campaign. This cost of monitoring seems affordable 

as it is equivalent to just 0.5% of the value of export apples at ship-side in New Zealand. While price 

premiums could compensate for it, using the carbon market seems unrealistic at present because 

the price of carbon would need to reach at least NZ$182/tonne.  

To inform development of a protocol for quantifying the carbon stocks in the woody biomass in a 

commercial apple orchard block, the relationship between the trunk cross-sectional area (TCA) and 

the woody dry mass (DM) of the trees was assessed using 10 trees that were destructively 

harvested. It was found that using this relationship together with a high number of TCAs measured 

in situ in the orchard block facilitated the rapid and cost effective estimation of the woody biomass 

carbon stocks at the orchard block scale. At the end of the orchard life, the carbon has been stored 

out of the atmosphere for the lifetime of the trees and this contributes to reduced climate change. 

Furthermore, at the end of life the trees may be burned for convenience, chopped for firewood or 

transformed into biochar and applied to soils. It was found that the biochar scenario provided the 

largest reduction, and that this benefit was equivalent to 0.7% of the carbon footprint of apples 

exported to Europe. The choice of a time horizon for the assessment was found to be critical, with 

comparative results varying up to three fold between the 20 year and the 100 year time horizons. 

Regarding changes in soil carbon stocks over time, the four-year-old orchard block was part of a 12 

year-old chronosequence, also including a one-year, a six-year and a twelve-year old block. The same 

sampling protocol was carried out in these three other blocks. It was found that all orchard blocks 

had relatively high soil-carbon stocks. Moreover, there was no significant difference in soil-carbon 

stocks at the 5% level between the one-year-old, the six-year-old and the twelve-year-old blocks of 

the chronosequence. Based on the soil-carbon stocks of these three blocks, current management 
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practices seem to be maintaining these carbon stocks over time. Therefore, unless management 

practices are modified, monitoring may not be required. However, this maintenance of relatively 

high soil-carbon stocks in orchard systems is beneficial for climate change and the ecosystem 

services provided by the soil. It should therefore be treated as such in LCA and CF studies although a 

method is yet to be developed. 

In addition, despite a high similarity with the other blocks, the four-year-old block showed a higher, 

significantly different soil-carbon stock, and the levels of variability in soil-carbon stocks were found 

to be different between all the blocks. This demonstrates the high local specificity of soil-carbon 

stocks. The six year-old block displayed a coefficient of variation (14%) larger than the other blocks, 

and so an analysis of sampling requirements was conducted for this block. A change of 10% of the 

mean could, in theory, be observed by collecting a total of 78 samples, bulked two by two, for 

carbon content, and using 39 bulk density profiles, all to one meter depth. The associated cost of 

monitoring is NZ$ 9,420 and is equivalent to 1% of the value of export apples at ship-side in New 

Zealand. Monitoring soil-carbon stocks would seem therefore affordable, even in the more variable 

orchard block. 

Overall, this research has made four main contributions to the science. Firstly, a robust, practical and 

adaptable protocol for monitoring soil-carbon stocks in apple orchards has been developed. 

Secondly, a rapid and cost effective method to estimate the carbon stock in standing woody biomass 

has been verified for use in commercial apple orchard blocks; accounting for this biomass carbon 

stock may lead to a net reduction of up to 4.6% of the New Zealand based (cradle to NZ port) CF of 

apples exported to Europe; Thirdly, a chrono-sequence of orchard blocks has suggested that current 

management practices in apple orchards appear to achieve the maintenance of high soil-carbon 

stocks over time, and it is suggested that this maintenance should be recognised as beneficial in CF 

and LCA studies. Finally, soil carbon stocks have been found to be spatially variable within and 

between similar orchard blocks; therefore LCA and CF studies should use site specific data and 

communicate the uncertainty of their soil-carbon stock estimates. 
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