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Abstract 

Cameroon has the second largest hydropower potential in Africa after the Democratic 

Republic of Congo. However, even with this potential, electricity supply in the country 

is insufficient and unreliable especially in the midst of the dry season, thus the many 

residents affected are inconvenienced due to lack of energy for lighting. This and 

coupled with climate change constraints, necessitates the investigation of measures 

geared towards effective utilization of the available energy from the grid and the 

feasibility of an alternative energy source to be employed in the onsite generation of 

electricity in residential buildings for lighting. In this research, a total of 100 residential 

dwellings of different classes (T1 to T7) were surveyed in the town of Buea, Cameroon. 

The survey employed the use of a questionnaire designed to collect data on current 

lighting technologies used in dwellings and the electricity load for lighting and basic 

communication appliances (radios and mobile phone chargers) of the dwellings. An 

economic and environmental analysis for transition towards efficient lighting in the 

surveyed dwellings was conducted. The load profiles of the dwellings classified from 

the k-means algorithm in R Statistics were used in the HOMER Pro software for a 

techno-economic modelling of residential PV systems (stand-alone and grid back-up) to 

meet the load of the dwellings. The survey had a questionnaire return rate of 92%. 

Results of the survey revealed that artificial lighting in the dwellings is achieved 

through the use of the following technologies: incandescent lamps, compact fluorescent 

lamps (CFL) and fluorescent tubes. The economic assessment of efficient lighting 

transition in the dwellings for an artificial daily lighting duration of six hours revealed a 

net present value (NPV) that ranges from $47 (T1 building) to $282.02 (T5 building), a 

benefit cost ratio (BCR) of 1.84 and a simple payback period (PBP) of 0.17 year (2 

months) for the substitution of current incandescent lamps in dwellings with CFL. The 

substitution of incandescent lamps with light emitting diodes (LED) revealed an NPV of 

the range $89.14 (T1 building) to $370 (T5 building), a BCR of 3.18 and a PBP of 1.92 

years (23 months). The substitution of incandescent lamps with CFL and LED results to 

a reduction in lighting related greenhouse gas (GHG) emissions from dwellings by 

66.6% and 83.3% respectively. Results from the HOMER modelling revealed a 

levelized cost of electricity (LCOE) of the PV system under the following parameters: 

0% annual capacity shortage, 40% minimum battery state if charge (SOC), 25 years PV 

lifetime, 5% discount rate and 2% inflation rate to be 10 to 13 times more expensive 
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(stand-alone system) and four to eight times more expensive (back-up system) 

compared to the grid electricity. The PV systems have potentials to save an annual 

emission of 89.17 to 527.37 kgCO2-e for the stand-alone system. Favourable government 

policies are necessary to spur the deployment of these low carbon technologies in the 

residential sector of Cameroon. 
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