

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. FEASIBILITY OF A SOLAR PHOTO-VOLTAIC SYSTEM AS AN ENERGY SOURCE FOR LIGHTING IN GRID-CONNECTED RESIDENTIAL BUILDINGS IN CAMEROON: CASE STUDY OF BUEA

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Environmental Management (without major) at Massey University, Palmerston North (New Zealand)

Enongene Kevin Enongene

(2016)

Abstract

Cameroon has the second largest hydropower potential in Africa after the Democratic Republic of Congo. However, even with this potential, electricity supply in the country is insufficient and unreliable especially in the midst of the dry season, thus the many residents affected are inconvenienced due to lack of energy for lighting. This and coupled with climate change constraints, necessitates the investigation of measures geared towards effective utilization of the available energy from the grid and the feasibility of an alternative energy source to be employed in the onsite generation of electricity in residential buildings for lighting. In this research, a total of 100 residential dwellings of different classes (T1 to T7) were surveyed in the town of Buea, Cameroon. The survey employed the use of a questionnaire designed to collect data on current lighting technologies used in dwellings and the electricity load for lighting and basic communication appliances (radios and mobile phone chargers) of the dwellings. An economic and environmental analysis for transition towards efficient lighting in the surveyed dwellings was conducted. The load profiles of the dwellings classified from the k-means algorithm in R Statistics were used in the HOMER Pro software for a techno-economic modelling of residential PV systems (stand-alone and grid back-up) to meet the load of the dwellings. The survey had a questionnaire return rate of 92%. Results of the survey revealed that artificial lighting in the dwellings is achieved through the use of the following technologies: incandescent lamps, compact fluorescent lamps (CFL) and fluorescent tubes. The economic assessment of efficient lighting transition in the dwellings for an artificial daily lighting duration of six hours revealed a net present value (NPV) that ranges from \$47 (T1 building) to \$282.02 (T5 building), a benefit cost ratio (BCR) of 1.84 and a simple payback period (PBP) of 0.17 year (2 months) for the substitution of current incandescent lamps in dwellings with CFL. The substitution of incandescent lamps with light emitting diodes (LED) revealed an NPV of the range \$89.14 (T1 building) to \$370 (T5 building), a BCR of 3.18 and a PBP of 1.92 years (23 months). The substitution of incandescent lamps with CFL and LED results to a reduction in lighting related greenhouse gas (GHG) emissions from dwellings by 66.6% and 83.3% respectively. Results from the HOMER modelling revealed a levelized cost of electricity (LCOE) of the PV system under the following parameters: 0% annual capacity shortage, 40% minimum battery state if charge (SOC), 25 years PV lifetime, 5% discount rate and 2% inflation rate to be 10 to 13 times more expensive

(stand-alone system) and four to eight times more expensive (back-up system) compared to the grid electricity. The PV systems have potentials to save an annual emission of 89.17 to 527.37 kgCO_{2-e} for the stand-alone system. Favourable government policies are necessary to spur the deployment of these low carbon technologies in the residential sector of Cameroon.

Acknowledgements

My sincere gratitude goes to Dr. Phil Murray and Associate Professor John D. Holland for playing the supervisory role to this piece of work through their invaluable insights, guidance and constructive criticisms. I am equally grateful to Dr. Karen Hytten for her support accorded to me throughout my study at Massey University.

I wish to thank the International Student Support team of Massey University for their support and encouragement throughout my course. I am indebted to Dr. Doris Adenyika and Mr. Joseph Kimenyi of Palmerston North, New Zealand for their assistance during my stay in New Zealand. I owe a great deal to my friends and course mates at Massey University with whom I studied and shared knowledge.

I am grateful to Dr. Nkwatoh Athanasuis Fuashi of the University of Buea and Dr. Abanda Henry Fonbenyin of the School of the Built Environment in the University of Oxford Brookes for their invaluable assistance in the data collection process through their review of the data collection tool. My appreciation goes to Dr. Mathieu Vignes for assisting me with my data analysis.

Special thanks to my mum and siblings who have always supported and encouraged me in every step I take in the academic ladder. I wish to seize this opportunity to express my thanks to the New Zealand Agency for International Development (NZAID) for awarding me a scholarship to undertake this course at Massey University, New Zealand.

Above all, I thank God Almighty for giving me the grace that enabled me to see this programme of study to completion.

Table of Content

Abstract	i
Acknowledgements	iii
Table of Content	iv
List of Tables	vii
List of Figures	viii
Acronyms	xi
Chapter 1: Introduction and background	1
1.1 Introduction	1
1.2 Problem statement	4
1.3 Aim and objectives	5
1.4 Limitation of the study	5
1.5 Key assumption	6
1.6 Significance of study	6
1.7 Background of study area	6
1.7.1 Climate	6
1.7.2 Socio-economic profile of Buea	7
1.7.3 Economic Activities	7
1.8 Thesis outline	8
Chapter 2: Literature review	10
2.1 Introduction	10
2.2 Cameroon's electricity sector	10
2.2.1 Electricity generation capacity	10
2.2.2 Electricity supply and demand	10
2.2.3 Reliability of electricity supply	14
2.2.4 Planned works	14
2.3 Cameroon dwellings	15
2.4 Residential electricity consumption	16
2.4.1 Common household electrical appliances used in Cameroon dwellings	16
2.4.2 Factors that accounts for load profile of dwellings	17
2.4.3 Classification of electricity time-of-use profiles	18
2.5 Energy efficient lighting technologies	20
2.5.1 Comparison of different lighting technologies	20
2.5.2 Evolution and adoption of efficient lighting technologies	21
2.6 Solar energy resource in Cameroon	24
2.7 Solar PV system	26
2.7.1 The photovoltaic effect	26
2.7.2 Types of solar cells	27
2.7.3 Types of PV system	28
2.7.4 PV system components	30
2.8 Design of a PV system	37
2.8.1 Sizing of array	37
2.8.2 Battery storage	40
2.8.3 Controller Specification	41
2.8.4 Determination of inverter size	41
2.9 Cost of PV system components in Cameroon	41
2.10 Installation and maintenance cost of PV systems	42

2.11 Economic, Social and Environmental benefits of PV systems	43
2.11.1 Economic	43
2.11.2 Social benefits of PV systems	48
2.11.3 Environmental benefits of PV systems	49
2.12 Case study analysis of solar PV projects in West African Countries	51
2.13 Review of the HOMER Software	53
2.14 Chapter Summary	54
Chapter 3: Materials and Methods	55
3.1 Introduction	55
3.2 Data collection	55
3.2.1 Questionnaire preparation	56
3.2.2 Household survey and questionnaire administration	57
3.3 Data analysis	58
3.3.1 Data inputting into excel	58
3.3.2 Economic and environmental analysis for transition towards efficient	
lighting.	58
3.3.3 Economic analysis of efficient lighting transition	59
3.3.4 Environmental analysis of efficient lighting transition	61
3.3.5 Load profile computation	62
3.3.6 Load profile classification	63
3.4 Correlation and Regression analysis	63
3.5 Modelling of PV systems	63
3.5.1 Design of PV system	63
3.5.2 Economic analysis of PV systems	67
3.5.3 Sensitivity analysis of the PV system modelling	67
3.5.4 Environmental analysis of the residential solar PV systems	68
3.6 Chapter summary	68
Chapter 4: Results	70
4.1 Introduction	70
4.2 Socio-economic information of respondents	70
4.2.1 Gender	70
4.2.2 Marital status of respondents	70
4.2.3 Occupation and level of education of respondents	71
4.2.4 Monthly income level of households	72
4.2.5 Household size and composition	72
4.3 Characteristics of dwellings	73
4.3.1 Unit type	73
4.3.2 Building class	73
4.4 Current lighting technologies employed in households	74
4.4.1 Preference to lighting technologies	74
4.4.2 Current bulbs used in dwellings	74
4.4.3 Alternative lighting technologies used by households during grid failure	78
4.5 Economic and environmental potential of efficient lighting adoption	78
4.5.1 Factors predicting the adoption of LED bulbs	78
4.5.2 Economic potential of efficient lighting adoption	79
4.5.3 Environmental Potential of efficient lighting adoption	88
4.6 Time-of-use profile of dwellings	89

4.6.1 Factors affecting load of dwellings	89
4.6.2 Classes of time-of-use profiles	90
4.6.3 Residential buildings per class of electricity time-of-use profile	93
4.7 Techno-economic modelling of a residential solar photovoltaic system using	
HOMER Pro.	93
4.7.1 Stand-alone PV system	93
4.7.2 Solar PV-grid system	98
4.8 Chapter summary	103
Chapter 5: Discussion	104
5.1 Introduction	104
5.2 Lighting technologies employed in households	104
5.3 Factors predicting LED adoption	105
5.3.1 Income and level of education of households	105
5.3.2 Market distortions associated with unit type of dwellings	106
5.4 Economic potential of efficient lighting adoption	106
5.4.1 Effect of lighting duration, discount rate and lifetime of lamp on the	
economic potential of efficient lighting	107
5.4.2 Effect of government subsidy on return on investment of LED	109
5.5 Environmental Potential of Efficient lighting adoption	109
5.6 Factors affecting the load of surveyed dwellings	110
5.7 Time-of-use electricity profile classes	110
5.8 Techno-economic modelling of residential photo-voltaic system	112
5.8.1 Stand-alone and back-up PV system	112
5.8.2 Sensitivity analysis	113
5.8.3 Comparison of stand-alone PV system and PV-grid system	114
5.8.4 Potential environmental and social benefits of the PV system	114
5.9 Chapter summary	115
Chapter 6: Conclusion and Recommendations	116
6.1 Introduction	116
6.2 Conclusion	116
6.3 Recommendations	119
6.4 Chapter summary	119
References	120
Appendix 1: Questionnaire employed in data collection	130
Appendix 2: Computation of the economic and environmental potentials of	
transition towards efficient lighting	139

List of Tables

2012	11
2012.	11
Table 2: Categorisation of residential buildings in Cameroon (differences	
between categories are in italics).	15
Table 3: Comparison of characteristics of different lighting technologies.	20
Table 4 Data for different types of lighting technology.	21
Table 5: Cost of PV system components in Cameroon.	42
Table 6: PV system component cost in Cameroon obtained from Haute	
Energy Systems Ltd.	42
Table 7: Top 20 solar photovoltaic PV projects in West Africa.	52
Table 8: Method employed in the computation of NPV for transition	
towards efficient lighting (CFL)	59
Table 9: Method employed in the computation of BCR and PBP for	
transition towards efficient lighting (CFL)	60
Table 10: ROI computation for substituting incandescent lamp with LED.	60
Table 11: Method employed in the computation of emission savings	
associated with the transition towards efficient lighting (CFL)	62
Table 12: Sensitivity parameters employed in the HOMER modelling.	68
Table 13: Marital status of respondents.	71
Table 14: Occupation of respondents.	72
Table 15: Monthly income level of households.	72
Table 16: Household size.	73
Table 17: Building class of surveyed building.	73
Table 18: Summary of multiple regression analysis for LED adoption.	79
Table 19: Average number of incandescent bulbs used in dwellings.	80
Table 20: Input data for the different bulb types.	80
Table 21: Quantity of energy consumed (kWh/year) by each lighting	
technology at six hours of use daily.	80
Table 22: Annual electricity cost (CFA) for lighting of different lamps for	
the base case (six hours of lighting).	81
Table 23: Results of economic analysis for substitution incandescent lamps	
with efficient lighting based on six hours lighting duration over	
the 22-year project duration.	82
Table 24: Results of economic analysis based on daily lighting duration of	
four hours over the 34-year project duration.	82
Table 25: Results of economic analysis based on daily lighting duration of 8	
hours over the 17-year project duration.	83
Table 26: Result of sensitivity analysis using 10% discount rate.	85
Table 27: Greenhouse gas emission savings (kgCO _{2-e}) for replacing	
incandescent lamp by CFL and LED.	88
Table 28: Multiple regression analysis summary for electrical load of	
dwellings.	90

Table 29: Average daily electricity profile (in watt-hour) for each profile	
class as depicted in Figure 40.	92
Table 30: Number of each building class per electricity time-of-use profile.	93
Table 31: Results of technical specification of system components for stand-	
alone system.	93
Table 32: Effect of maximum annual capacity shortage and battery state on	
charge on system components.	95
Table 33: Results of economic analysis of the stand-alone system for the	
base case.	96
Table 34: Result of system component specification for back-up PV system	
for the base case.	98
Table 35: Economic analysis of grid connected PV system over a 25-year	
lifetime.	101
Table 36: Annual emission reductions (kgCO _{2-e}) associated with the use of	
PV systems in dwellings.	103
Table 37: Lifetime, power rating, energy consumption and Cost comparison	
of different lighting technologies.	138
Table 38: Computation of NPV for transition from incandescent lighting to	
CFL.	139
Table 39: Computation of benefit cost ratio and simple payback period for	
transition from incandescent lighting to CFL.	139
Table 40: Computation of return on investment for substituting incandescent	
lamp with LED.	139
Table 41: Environmental analysis computation for substituting incandescent	
lamp with CFL.	140

List of Figures

Figure 1: Map showing the location of the study area in Cameroon (Source:	
adapted from Google map).	8
Figure 2: Map of electricity generation and transmission networks in	
Cameroon. Source: Nfah et al. (2008).	13
Figure 3: Installed capacity, available capacity and electric power demand in	
2010 in Cameroon.	13
Figure 4: Electricity time-of-use profile of a dwelling in Yaounde,	
Cameroon (Source: Manjia et al., 2015).	18
Figure 5: Classified daily electricity profiles in watts (x-axis: midnight to	
midnight) according to Stoecklein et al. (2001).	19
Figure 6: Direct, normal plane solar irradiation map of Cameroon (Solar	
GIS, 2014).	25
Figure 7: Components of a stand-alone PV system (Abdul and Anjum,	
2015).	29

Figure 8: I-V curve and characteristics of a typical module.	31
Figure 9: Influence of junction temperature of PV cell on open circuit	
voltage. (Source: Huang et al., 2011).	32
Figure 10: Global map of PV LCOE (Source: Ondraczek et al., 2015).	47
Figure 11: Environmental impacts of electricity generation technologies for	
selected impact categories shown relative to the maximum (=1) in	
each impact category. NG=natural gas; NGCC=natural gas	
combined cycle; CCS=carbon capture and storage;	
EPR=European pressurized reactor; PV=photovoltaics;	
CSP=concentrated solar power (Source: Treyer & Bauer, 2015).	51
Figure 12: Conceptual relationship between simulation, optimization and	
sensitivity analysis.	53
Figure 13: Schematic of research methodology.	55
Figure 14: Schematic of stand-alone (left) and grid back-up (right) PV	
systems.	64
Figure 15: Home page of the HOMER Pro software.	64
Figure 16: Screen capture of the Load tab of HOMER Pro	65
Figure 17: Screen capture showing the different components (in red	
rectangle) under the Component tab of HOMER Pro.	66
Figure 18: Reliability tab of the advanced grid component.	66
Figure 19: Average daily solar radiation for Buea obtained from HOMER	
Pro software.	67
Figure 20: Gender of Respondents.	70
Figure 21: Level of Education of respondents.	71
Figure 22: Households preference for lighting technologies based on	
knowledge of associated energy savings.	74
Figure 23: Current lighting technologies used in dwellings.	75
Figure 24: power rating and numbers of incandescent bulbs used in	
dwellings.	75
Figure 25: 60W incandescent lamp used in dwellings.	76
Figure 26: 20W compact fluorescent lamp used in residential dwellings.	76
Figure 27: Power rating of CFLs used in dwellings.	77
Figure 28: A 60W fluorescent tube used in dwellings.	77
Figure 29: Alternative lighting technologies used in dwellings.	78
Figure 30: Variation of energy consumption with number of lighting hours.	81
Figure 31: Variation of NPV with daily lighting duration.	83
Figure 32: IRR of CFL and LED for different lighting durations.	84
Figure 33: BCR of CFL and LED for different lighting durations.	84
Figure 34: Payback period of CFL and LED for different lighting durations.	85
Figure 35: NPV of CFL and LED at 5 and 10% discount rate.	86
Figure 36: BCR of CFL and LED at 5 and 10% discount rate.	86
Figure 37: Effect of lifetime of LED on NPV.	87

Figure 38:	Return of investment for different subsidy rate and lighting	
	durations by substituting incandescent lamps with LEDs in the	
	first year.	88
Figure 39:	Results of sensitivity analysis on the environmental benefits of	
	replacing incandescent lamps by CFLs and LEDs.	89
Figure 40:	Daily electricity profile classes in watts (x-axis: midnight-to-	
	midnight, y-axis: watts) obtained from the k-means algorithm.	91
Figure 41:	Monthly average electricity production for stand-alone PV	
	system for different profile classes as obtained from modelling in	
	HOMER Pro.	94
Figure 42:	Effect of discount rate (Left) and inflation rate (Right) on the	
	LCOE of the stand-alone PV system.	96
Figure 43:	Effect of maximum annual capacity shortage (Left) and PV	
	lifetime (Right) on the LCOE for stand-alone PV system.	97
Figure 44:	Effect of the minimum battery state of charge on the LCOE for	
	stand-alone PV system.	97
Figure 45:	Effect of maximum annual capacity shortage in 5% increments	
	against PV array size (Left) and number of battery (Right) for	
	back-up PV system.	98
Figure 46:	Effect of minimum battery state of charge on battery size (Left)	
	and PV array size (Right) for the back-up PV system.	99
Figure 47:	Monthly electricity production of back-up PV system for the	
	different electricity profile classes with the grid outage period	
	shown (from January to June).	100
Figure 48:	Effect of discount rate (Left) and inflation rate (Right) on the	
	LCOE of the grid back-up PV system.	101
Figure 49:	Effect of maximum annual capacity shortage (Left) and PV	
	module lifetime (Right) on the LCOE of the grid back-up PV	
	system.	102
Figure 50:	Effect of battery minimum state on the LCOE of grid back-up PV	
	system.	102

Acronyms

AC	Alternating Current
BCR	Benefit Cost Ratio
CD	Compact Disc
CFL	Compact Fluorescent Lamp
DC	Direct Current
DVD	Digital Video Disc
ESDP	Electricity Sector Development Programme
GHG	Greenhouse Gas
GWh	gigawatt-hour
HOMER	Hybrid Optimization Model for Renewable Energy
IRR	Internal Rate of Return
kW	kilowatt
kWh	kilowatt-hour
LED	Light Emitting Diode
MPPT	Maximum Power Point Tracker
MW	Mega-Watt
NPC	Net Present Cost
NPV	Net Present Value
NREL	National Renewable Energy Laboratory
PBP	Simple Payback Period
PV	Photo Voltaic
SOC	State of Charge
SONARA	National Oil Refinery of Cameroon
STC	Standard Test Conditions