

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Unraveling the dynamics of proteinprotein interactions in the Gcn2 signal transduction pathway

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Genetics

Massey University, Albany

New Zealand

Rashmi Ramesh

July 2016

Abstract

Eukaryotic cells regulate protein synthesis (translation) for a rapid response to various types of stress, and this involves several protein-protein interactions (PPIs) and protein phosphorylation. Phosphorylation of eukaryotic initiation factor-2 α (eIF2 α) is a common regulatory mechanism to adjust protein synthesis in response to various stimuli. Gcn2 (General Control Non-derepressible) is an eIF2 α kinase that is conserved from yeast to mammals, that is activated in response to amino acid starvation. Gcn2 activation leads to a reduction in global protein synthesis and simultaneous augmented translation of GCN4, a transcriptional activator of genes that are necessary to overcome stress. This cascade of events that allows cells in stress adaptation constitutes the General Amino Acid control (GAAC) pathway in yeast.

Gcn2 activity is controlled by a large array of proteins that directly or indirectly regulate Gcn2. Gcn2 has to bind another protein called Gcn1, in order to be activated in response to amino acid starvation. Yih1 (Yeast IMPACT homolog 1) in yeast and its counterpart IMPACT (IMPrinted and AnCienT) in mammals are homologous proteins that indirectly regulate Gcn2. Yih1/IMPACT inhibit Gcn2 by competing for Gcn1 binding. Yih1 associates with Actin, and studies so far have suggested that Yih1 only inhibits Gcn2 when it dissociates from Actin. The focus of this thesis work was to shed more light on those interactions relevant for Gcn2 regulation.

Firstly, we have identified that the Yih1 mediated interactions occur at distinct cellular locations within the cell, supporting the idea that spatially restricted cellular interactions controlled Gcn2 function. Using *in vitro* studies we have identified the regions on eEF1A that are involved in Gcn2 and Yih1 binding. The distinct binding sites for both proteins on eEF1A led to further investigations on how the dynamics of these interactions involving eEF1A might affect Gcn2 function. Together with unpublished observations by E Sattlegger and B Castilho, a function for the Yih1 ancient domain in interacting with eEF1A has been identified. Finally, the mechanisms by which Actin might control Gcn2 function were studied. In this regard, we have identified the Yih1-Actin interaction as one of the key PPIs involved in the crosstalk between the cytoskeleton and Gcn2 regulation. Together, the findings presented in this thesis, support the hypothesis that Gcn2 activity is spatiotemporally controlled by dynamic PPIs that occur at specific time at particular locations.

Acknowledgements

This journey towards a PhD would not have been such fun without the love, care and guidance of family, friends and mentors. I am grateful that I have such wonderful people in my life.

First and foremost, I would like to thank the pillars of my life-my parents, Mr Ramesh Iyer and Mrs Thara Ramesh, for their unconditional love, constant support and encouragement to follow my interests.

I would like to thank my supervisor, Dr Evelyn Sattlegger for taking me on her team, and teaching me the basic concepts of molecular biology. I acknowledge her patience, constant guidance and support along this journey. Thank you Evelyn, for the thought provoking scientific discussions and motivations that have pushed me to learn and widen my skills. It has indeed been a rewarding experience to work under her supervision and this thesis would not have appeared in its present form without her guidance, ideas and substantial corrective comments. I am grateful for her earnest interest in my wellbeing-both personal and academic.

I would like to thank my co-supervisor, Distinguished Prof Paul Rainey, for his support and encouragement. The research presented in this thesis involved fluorescence microscopy. I would like to thank Dr Heather Hendrickson for teaching me the basics of microscopy and for her patience and time when I had questions. My sincere thanks to Dr Matthew Savoian from Manawatu Microscopy and Imaging Center for providing technical advice on imaging and for acquiring confocal images.

I acknowledge the financial support I have received in the form of scholarships from Massey University for the first three years and from the Institute of Natural and Mathematical Sciences, Massey University for the fourth year.

I would like to thank Dr Alan Hinnebusch, Dr Thomas Dever and Dr Orna Cohen-Fix (researchers at NIH) for their valuable advice and discussions on this thesis work. My sincere thanks to my mentor, Late Dr Basavaraj KH, for his genuine interest in my career and concern over my general wellbeing.

My sincere thanks to the past and present members of the Sattlegger lab - Dr Jyothsna Visweswaraiah, Dr Martina Dautel, Mr Michael Bolech, Ms Su Jung Lee, Dr Richard Cardoso da Silva, Ms Viviane Jochmann, Dr Renuka Shanmugam for making the lab atmosphere conducive to carry out my experiments and for the academic and non-academic discussions. Many thanks to Mrs Kayleigh Evans and Mrs Hayley Prescott for their comments on this thesis work and proof reading assistance. Thank you all for the fun, laughter, discussions and moral support during the entire journey.

I would also like to thank Mr Robert Knoll and Mr Fynn Hansen, who helped with the GFP localization studies during their internship at Sattlegger lab. Few of these studies are part of this thesis.

Heartfelt thanks to Mrs Colleen Van Es for always having time to listen to my complaints and frustrations and for the very genuine 'how are you?' Thank you Colleen for making administrative work seem effortless.

I thank my friends in New Zealand-Dr Setareh Mokhtari, Ms Yeserin Yildirim and Ms Jessica Patińo Perez for their support and advice through out this journey. Thanks are also due to all my friends back home in India and elsewhere, who have been so supportive from afar.

Many thanks to my partner, Pradeepa Ramachandra for being the moral support throughout the thesis revision stages and for his help in formatting this thesis.

I would also like to thank my brother, Ranjan for all the laughter and support throughout this journey.

Last, but not the least, I would like to thank the many friendly faces of Building 11 whose mere presence made life in the lab pleasant.

Abbreviations

In addition to the chemical symbols from the periodic table of elements and the système international d'unités (SI), the following abbreviations are used:

3AT	3 amino 2, 4 triazole
3AT ^s	sensitive to 3AT
A-site	acceptor-site
APS	ammonium persulphate
ATP	adenosine triphosphate
BiFC	Bimolecular fluorescence
	complementation
BSA	Bovine Serum Albumin
CIP	calf intestinal phosphatase
CTD	C-terminal domain
DAPI	4',6-diamidino-2-phenylindole
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
DTT	dithiothreitol
E-site	exit-site
EDTA	ethylenediamine tetra acetic acid
eEF1A	eukaryotic elongation factor 1A
eEF1A-I	eEF1A domain I
eEF1A-II	eEF1A domain II
eEF1A-III	eEF1A domain III
eEF1A-I+II	eEF1A domains I and II
eEF1A-IImut	eEF1A with mutations in domain II
eEF3	eukaryotic elongation factor 3
EF2	elongation factor 2
eIF2	eukaryotic initiation factor 2
FITC	Fluorescein isothiocyanate
GAAC	general amino acid control
Gcd	general control derepressed
Gcn	general control non derepressible
GDP	guanosine diphosphate
GFP	green fluorescent protein
Gir2	genetically interacts with ribosomal
GTP	guanosine trinhosnhate
HEPES	$4_{(2-hydroxyethyl)_1_}$
	ninerazineethanesulfonicacid
HisRS	histidyl-tRNA synthetase

IMPACT	Imprinted and Ancient
IPTG	isopropyl-β-D-thiogalactopyranoside
LB	Luria-Bertani
OD	optical density
ORF	open reading frame
P-site	peptidyl donor site
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG	polyethylene glycol
PMSF	phenylmethanesulphonyl fluoride
PVDF	polyvinylidine difluoride
RNA	ribonucleic acid
RNase	ribonuclease
RPM	revolutions per minute
RWD	RING finger proteins, WD-repeat-
	containing proteins, yeast DEAD-
	like helicases
SD	synthetic defined
SDS PAGE	sodium dodecyl sulphate
	polyacrylamide gel electrophoresis
SDS	sodium dodecyl sulfate
SM	sulfometuron methyl
SM ^S	sensitive to SM
TBS	tris_huffered saline
TEMED	N N N' N'_
TEMED	Tetramethylethylenediamine
	transfor DNA
	Ultraviolat
UV VC	C terminal fragmant of Vanua
vc	C terminal magnetic of venus
	N terminal fragment of Venue
VIN	N terminal fragment of venus
WOR	fluorescent protein
	whole cell extract
xleu	Sensitive to excess leucine
	Y ellow fluorescent protein
Yihl	Yeast IMPACI Homolog I
YPD	yeast peptone dextrose
YPG	yeast peptone glycerol

Table of Contents

1. Introduction	1
1.1. General overview of translation in eukaryotes	1
1.2. Translation control by phosphorylation of eIF2α	4
1.3. The eIF2α kinase Gcn2	5
1.4. Selective translation of GCN4	7
1.5. Gcn2 regulation	9
1.5.1. Gen1 and Gen20	10
1.5.2. Yih1	12
1.5.3. Gir2	16
1.5.4. eEF1A	16
1.5.5. Actin	20
1.6. Hypothesis, aims and objectives	23
1.7. Significance	23
. Materials and Methods	25
2.1. Media	25
2.2. DNA isolation	26
2.3. Agarose gel electrophoresis	27
2.4. Cloning	28
2.5. Bacterial transformation	34
2.6. Induction of protein expression	38
2.7. Preparation of protein extracts from <i>E. coli</i>	38
2.8. Yeast transformation	39
2.9. Preparation of yeast whole cell extract	42
2.9.1. Cell growth and formaldehyde crosslinking	42
2.9.2. Generation of yeast whole cell extracts	42
2.10. Estimation of protein concentration	43
2.11. In vitro interaction assays for His6-tagged proteins (iMAC mediated pull down)	44
2.12. Purification of His ₆ -tagged proteins	44
2.13. Glutathiones-S-Transferase mediated in vitro interaction assays (GST pulldown)	44
2.14. Purification of GST-tagged proteins	45
2.15. Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis (SDS PAGE)	45
2.16. Coomassie staining	46
2.17. Transfer of proteins onto PVDF membranes	47

2.18	Ponceau S staining	48
2.19	Western Blotting	48
2.20	Quantification of Western blots	49
2.21	Microscopy	50
2.22	Semi-quantitative growth assay	51
3. L	ocalization studies using bimolecular fluorescence	
comp	olementation (BiFC)	53
3.1.	Bimolecular fluorescence complementation (BiFC)	53
3.2.	Construction of strains	54
3.3.	Confirmation of tagging	56
3.4.	Verification of protein expression	57
3.5.	Effect of VN/VC tag on protein function	59
3.6.	Yih1 and Actin interact in the living cell.	62
3.7.	Verification of BiFC interaction between Yih1-VN and Actin-VC	64
3.8.	Identifying the minimal Yih1 regions sufficient to abolish nuclear Yih1 Actin BiFC.	67
3.9.	Finding the minimal region of Yih1 required for interaction with Actin, using BiFC.	70
3.10	Effect of Latrunculin on Yih1-Actin interaction as determined by BiFC assays	75
3.11	Yih1-VN and Gcn1-VC interaction lead to a weak BiFC signal	77
3.12 Gen	Amino acid starvation intensifies the BiFC interaction between Yih1-VN and	80
3 13	Discussion	83
1 SI	adding more light on interactions that are relevant for	05
$\begin{array}{c} 4. 51 \\ \mathbf{Con} \end{array}$	requiring more light on interactions that are relevant for requiring a FF1A Con2 interaction	03
	Identifying the eEF1A demain that his de the O terminal demain of O and	
4.1.	Concerting the eEFTA domain that binds the C terminal domain of Gen2.	93
4.1.1	. Generation of bacterial extracts containing recombinant proteins	93
4.2.	Identification of eEFIA regions that interact with Gcn2 in vitro	97
4.2.1	eEFIA domains I and II bind GSI-Gen2-CID	9/
4.3. does	Overexpression of eEFIA domains 1+11, or domain 11 alone, in yeast s not impair Gcn2 function <i>in vivo</i>	99
4.4. over	Finding links between 3AT resistance and Gcn2 activity in strains expressing eEF1A domains I+II.	104
4.5.	eEF1A-I+II and II bind Gcn2 (HisRS+CTD) in vitro.	107
4.6. and (Excess tRNAs do not dissociate the <i>in vitro</i> interaction between eEF1A fragments Gcn2 (HisRS+CTD).	110
4.7.	Discussion	114

5. Shedding more light on interactions that are relevant for	
Gcn2 regulation: Yih1 –eEF1A interaction	119
5.1. Yih1 interacts with eEF1A	120
5.2. eEF1A domain III interacts with Yih1	122
5.3. Yih1 contacts eEF1A mainly via its C terminal ancient domain	125
5.4. Investigating the interrelationship between Yih1 and Gcn2 binding to eEF1A	129
5.4.1. Production and purification of recombinant proteins	129
5.4.2. Yih1 and Gcn2 binding to eEF1A is co-operative as well as competitive	131
5.5. Discussion	136
6. Unraveling the roles of Actin in GAAC response	141
6.1. Assessment of unpublished findings obtained in the Sattlegger lab prior to commencement of this thesis	142
6.1.1. Identification of Actin mutations that show sensitivity to drugs causing starvation to amino acids	on 142
6.1.2. ACT1 could revert the SM ^S of 11 mutated Actin alleles	144
6.1.3. SM ^S of Actin mutants was due to GAAC impairment upstream of GCN4	144
6.2. Determining Actin levels in Actin mutant strains	147
6.3. Identification of Actin mutations that show reduced eIF2α-P levels under nutrient replete conditions.	t 149
6.4. Scoring for Actin mutants with reduced eIF2α-P levels under amino acid starvatic conditions	on 153
6.5. Screening for genetic interactions between Actin mutations and Yih1	158
6.6. Unraveling the mechanism of Gcn2 inhibition in <i>act1-9</i>	167
6.7. In vivo evaluation of Yih1-Actin interaction in act1-9	170
6.8. Discussion	174
7. Conclusions and future directions	185
8. References	189
9. Appendix	201

List of Figures

Figure 1-1: Cartoon representation of eukaryotic translation process.	3
Figure 1-2: Schematic to translation control in response to stress.	4
Figure 1-3: Schematic representation of Gcn2.	6
Figure 1-4: Schematic representation of GCN4 translation. The leader sequence of GCN4	
mRNA has four upstream open reading frames (uORFs).	9
Figure 1-5: Gcn2 is regulated by a network of proteins.	10
Figure 1-6: Schematic representation of Gcn1	11
Figure 1-7: Schematic presentation of functional domains in Yih1.	13
Figure 1-8: Model for Gen2 regulation.	15
Figure 1-9: Schematic representation of eEF1A.	18
Figure 1-10: Treadmilling of Actin filaments.	20
Figure 1-11: The three dimensional structure of the Actin monomer	21
Figure 2-1: Schematic of procedure employed to generate yih1-Myc fragments	32
Figure 3-1: Principle of Bimolecular Fluorescence Complementation	53
Figure 3-2: Successful tagging of genes with VN or VC.	57
Figure 3-3: Tagged proteins are expressed similar to wild type levels	59
Figure 3-4: Semiquantitative growth assay of strains expressing VN and VC tagged strains	61
Figure 3-5: Yih1-Actin interaction occurs mainly in the nucleus.	63
Figure 3-6: VN and VC do not associate in random.	65
Figure 3-7: Introduction of extra copies of Flag-His6-Yih1 diminishes the BiFC signal	66
Figure 3-8: Yih1-Myc (68-171) is sufficient to diminish the BiFC signal:	68
Figure 3-9: Yih1-VN (68-258) is sufficient to generate the BiFC signal with Actin-VC:	72
Figure 3-10: Expression levels Yih1-VN full-length and fragments.	73
Figure 3-11: Actin-VC deploymerisation increases the cytoplasmic BiFC fluorescence	
signal:	76
Figure 3-12: The Yih1-VN-Gcn1-VC interaction has a punctate localization.	79
Figure 3-13: Introduction of extra copies of Flag-His6-Yih1 diminishes the BiFC signal	80
Figure 3-14: Starvation to amino acids intensifies the BiFC fluorescence of the Yih1-Gcn1	
interaction	81
Figure 3-15: Model for interaction between Yih1-VN (68-171) and Actin-VC	88
Figure 4-1: Successful induction of eEF1A domains I, II and III	94
Figure 4-2: eEF1A domains I and II bind GST-Gcn2-CTD.	98
Figure 4-3: Overexpression of eEF1A domains I + II confer resistance to 3AT	101
Figure 4-4: Supplementation of Histidine reverts the 3AT resistance in strains	
overexpressing eEF1A domains I+ II.	101
Figure 4-5: 3AT resistance and increased growth is due to involvement of Gcn2	. 102
Figure 4-6: Overexpression of eEF1A-I+II does not constitutively activate Gcn2.	. 103
Figure 4-7: Scoring for Gcn2 activity.	. 106
Figure 4-8: eEF1A-I+II and - II bind Gcn2 (HisRS+CTD) in vitro.	. 109
Figure 4-9: tRNAs do not dissociate the interaction between eEF1A fragments and Gcn2	
(HisRS+CTD) in vitro	111
Figure 4-10: Possible mechanisms of tRNA mediated dissociation of eEF1A-Gcn2	
interaction	115
Figure 4-11: Additional eEF1A binding site in Gcn2-HisRS-like domain might prevent	
complete dissociation of eEF1A-Gcn2 interaction in the presence of tRNA in vitro	. 117

Figure 5-1: eEF1A binds to GST-Yih1 in vivo.	120
Figure 5-2: Yih1 binds to eEF1A in vitro.	122
Figure 5-3: eEF1A domain III binds Yih1	123
Figure 5-4: Yih1 interacts with eEF1A mainly via its ancient domain.	127
Figure 5-5: Coomassie staining to reveals the presence of desired proteins.	130
Figure 5-6: Gcn2-CTD and Yih1 compete for binding with eEF1A.	132
Figure 5-7: Yih1 competes with Gcn2-CTD for eEF1A binding.	135
Figure 6-1: Cartoon representing results of a semi-quantitative growth assay to score for	
drug sensitivity.	143
Figure 6-2: Overview of unpublished results from the Sattlegger lab relevant for this study	146
Figure 6-3: Scoring for steady state Actin levels and eIF2a-P levels in Actin mutants.	149
Figure 6-4: Scoring for eIF2α-P levels under nutrient replete conditions.	152
Figure 6-5: Scoring for eIF2α-P levels under nutrient replete and amino acid starvation	
conditions.	157
Figure 6-6: Cartoon representation of a semi-quantitative growth assay to score for GAAC	
impairment.	160
Figure 6-7: GST-Yih1 overexpression in the act1-9 strain leads to reduction in eIF2α-P	
levels under nutrient replete and amino acid starvation conditions.	162
Figure 6-8: Scoring for eIF2α-P levels when GST-Yih1 is overexpressed in Actin mutants	
under replete and amino acid starvation conditions.	165
Figure 6-9: GST-Yih1 binds Actin in vivo.	169
Figure 6-10: Yih1-Actin interaction is weakened in the act1-9 mutant	171
Figure 6-11: VN and VC tagged proteins are stably expressed.	172
Figure 6-12: Mechanisms of Actin mediated Gcn2 inhibition in Actin mutants	175
Figure 6-13: Location of Actin mutations that impair GAAC	176
Figure 6-14: Mechanisms of Yih1 mediated Gcn2 inhibition in Actin mutants	178

List of tables

Table 2-1: Bacterial supplements	25
Table 2-2: Yeast media and supplements	25
Table 2-3: List of DNA oligomer primers	30
Table 2-4: List of plasmids	36
Table 2-5: List of S. cerevisiae strains	41
Table 2-6: Mutated amino acids in Actin alleles used in this study	42
Table 2-7: List of primary and secondary antibodies.	49