Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE COOLING OF SPENT CARBON ANODES IN THE ALUMINIUM SMELTING INDUSTRY

A THESIS PRESENTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE IN
MATHEMATICS AT
MASSEY UNIVERSITY

Matthew Cole March 1996

Abstract

As part of the New Zealand Aluminium Smelters (NZAS) upgrade, a hot butt cleaning system has been proposed, this would remove the bath from anodes as they are removed from the cells. It is expected that the time to cool for hot cleaned anodes would be significantly less than for current method of allowing the butts to cool before the bath is removed.

In this project a mathematical model of the cooling process of both the clean and dirty anodes is developed. This model will aid in the investigation of the hot butt cleaning system by showing the difference in cooling times between the clean and dirty anodes.

The temperature profiles within both clean and dirty anodes is calculated for one-, two- and three-dimensional models. Temperature changes in the anodes with time are also compared to experimental data.

Acknowledgments

Many people have helped me in during the writing of this thesis. In particular I would like to acknowledge the following people:

Professor Robert McKibbin for his guidance and supervision over the last year.

I thank New Zealand Aluminium Smelters (NZAS) for their support. Thank you to John Carran and Rob Wallace for your ideas and assistance.

Graeme and Rowena my parents for all their support and encouragement, for being there when I need you and letting me borrow the car when needed.

My brother Richard for all the email messages and helping out with the drawing of the diagrams. My brother Nicholas, sister Louise and brother-in-law Murray.

My flatmates who have helped me over the last year, especially Phillip and Nigel for being good mates.

Associate Professor Dean Halford and colleagues of the Mathematics Department for your encouragement and support. Professor Graeme Wake for suggesting I apply for the scholarship and do a Masters.

The other graduate assistants for your encouragement and advice, especially Mark Johnston for all help with the computers.

All my friends at Christian Community Church for your guidance and prayers, especially Hugh and Donna McGarvey and the homegroup.

Nomenclature

All constants and variables used in this thesis are defined when first used. Commonly used notation is summarized here.

a,b,c,d,e,f,g	diffusivity coefficients $[m^2/s]$
A	surface area $[m^2]$
A, B, C, D	defined variables
A_h	horizontal downward facing surface area $[m^2]$
Bi	Biot number [—]
c	heat capacity $[kJ/kgK]$
c_1,c_2,c_3	defined constant
D	diameter of sphere $[m]$
E_g	energy generated in a system $[J]$
E_{in}	energy transferred into a system $[J]$
E_{out}	energy transferred out of a system $[J]$
E_s	energy stored in a system $[J]$
F(x), G(t)	defined function
Fo	Fourier number [—]
g	gravitional acceleration $[m/s^2]$
h	heat transfer coefficient $[W/m^2K]$
h_c	convection heat transfer coefficient $[W/m^2K]$

```
radiation heat transfer coefficient [W/m^2K]
h_r
H
                 height [m]
H
                 characteristic length [m]
H
                 dimensionless heat transfer coeffecient [-]
                 thermal conductivity [W/mK]
k
                 thermal conductivity in x-direction [W/mK]
k_x
                 thermal conductivity in y-direction [W/mK]
k_y
                 thermal conductivity in z-direction [W/mK]
k_z
L
                 length [m]
                 longest linear dimension [m]
L_m
L_x
                 x dimension [m]
                 y dimension [m]
L_y
                 z dimension [m]
L_z
Nu
                 Nusselt Number [-]
\bar{P}
                 mean horizontal perimeter [m]
Pr
                 Prandtl Number [-]
                 rate of heat transfer [kW]
q
                 rate of convection heat transfer [kW]
q_c
                 rate of radiation heat transfer [kW]
q_r
q''
                 rate of heat transfer [kW]
q_1,q_2,q_3,q_4,q_5,q_6 rate of heat transfer from specific direction [kW]
Ra_H
                 Rayleigh Number [-]
                  Reynolds Number [-]
Re
                  time [s]
t
```

```
time normalisation constant [s]
      t_o
      \bar{t}
                          normalised time [-]
      T
                          temperature [K]
      T_i
                          initial temperature [K]
      T_o
                          temperature normalisation constant [K]
      T_s
                          surface temperature of anode [K]
      T_{\infty}
                          ambient temperature [K]
      \bar{T}
                          normalised temperature [-]
                          air speed [m/s^2]
      U_{\infty}
                          length normalisation constant [m]
      vo
      V
                          volume of body [m^3]
                          spatial coordinate
      x, y, z
                          length normalisation constant [m]
      x_o
      \bar{x}, \bar{y}, \bar{y}
                          normalised spatial coordinate [-]
      X(x), Y(y), Z(z) defined function
                          thickness of body [m]
      z_f
Greek
                          thermal diffusivity [m^2/s]
      \alpha
                          coefficient of thermal volumetric expansion [K^{-1}]
      B
      8
                          ratio of timesteps to grid size squared [s/m^2]
      \Delta t
                          size of timestep [s]
                          distance between mesh points in x-direction [m]
      \Delta x
                          distance between mesh points in y-direction [m]
      \Delta y
      \Delta z
                          distance between mesh points in z-direction [m]
                          emissivity [-]
      \epsilon
```

 λ, μ, ν defined variables μ_s viscosity of air at surface temperature [kg/sm] μ_∞ viscosity of air at ambient temperature [kg/sm] ν kinematic viscosity $[m^2/s]$ ρ density $[kg/m^3]$ σ Stefan-Boltzmann Constant $[W/m^2K^4]$

Subscripts

b bath
c carbon
i grid points
j grid points
k grid points
s steel

Superscripts

m timesteps

Contents

A	bstra	act	ii
A	cknov	wledgments	iii
N	omer	nclature	iv
Ta	able (of Contents v	iii
Li	st of	Figures	kii
Li	st of	Tables	iii
1	Intr	oduction	1
	1.1	Background	1
	1.2	Outline	4
2	Mo	des of Heat Transfer for a Cooling Anode	5
	2.1	Convection	5
		2.1.1 Natural Convection	6
		2.1.2 Forced Convection	7
	2.2	Radiation	8
	2.3	Summary	8
3	Lun	nped System Model	10
	3.1	Heat Transfer in a System	10
	3.2	Numerical Solution	11
	3.3	Summary	11

4	Hea	at Equation	13
	4.1	Formulation of the Heat Equation	13
	4.2	Boundary and Initial Conditions	17
	4.3	Summary	18
5	Ana	alytical Solution	20
	5.1	One-Dimensional Solution	20
		5.1.1 Linearisation	20
		5.1.2 Normalisation	21
		5.1.3 Separation of Variables	22
		5.1.4 Orthogonality	26
	5.2	Two-Dimensional Solution	27
		5.2.1 Linearisation	27
		5.2.2 Normalisation	27
		5.2.3 Separation of Variables	29
	5.3	Three-Dimensional Solution	32
		5.3.1 Linearisation	32
		5.3.2 Normalisation	33
		5.3.3 Separation of Variables	34
	5.4	Summary	35
6	One	e-Dimensional Numerical Solution	37
	6.1	Constant Physical and Thermal Properties	37
		6.1.1 Finite Difference Approximations	37
		6.1.2 Numerical Results	42
	6.2	Variable Physical and Thermal Properties	44
		6.2.1 Finite Difference approximations	44
		6.2.2 Numerical Simulation	45
	6.3	Accuracy and Stability of Numerical Method	47
	6.4	Summary	50
7	Two	o-Dimensional Numerical Solution	51
	7.1	Constant Physical and Thermal Properties	51
		7.1.1 Finite Difference Approximation	51
		7.1.2 Anode with no bath or yoke	59
	7.2	Variable Physical and Thermal Properties	61

		7.2.1 Finite Difference Approximation 62
		7.2.2 Two-dimensional Simulations
	7.3	Summary
8	Thr	ree-Dimensional Numerical Solution 73
	8.1	Finite Difference Equations
	8.2	Variable Physical and Thermal Properties 90
	8.3	Numerical Simulation
		8.3.1 Clean Anode
		8.3.2 Dirty Anode
	8.4	Summary
9	Cor	nclusions 105
	9.1	Effect of Hot Cleaning of Spent Anodes
	9.2	The Mathematical Model
	9.3	Future Work
Bi	bliog	graphy 107

List of Figures

1.1	Schematic of smelting cell	2
1.2	Spent anode and new anode in cooling gallery	2
1.3	A new anode with assembly yoke	3
3.1	Cooling curve for lumped system model compared with measured data	12
4.1	Important energy terms for a plane-wall system	14
4.2	Important energy terms for a two-dimensional system	16
4.3	Heat flow in a one-dimensional anode	17
5.1	Temperature surface for one-dimensional analytic solution	36
6.1	One-dimensional internal node	41
6.2	One-dimensional surface node	41
6.3	Temperature surface for one-dimensional numerical solution	44
6.4	Temperature profiles for butts with various bath thicknesses	46
6.5	Cooling curve of a point in carbon compared to experimental data .	47
6.6	Cooling curve of a point in bath compared to experimental data	48
6.7	Temperature of clean node	48
6.8	Temperature profiles of dirty anode (top) and clean anode (bottom)	49
7.1	Two-dimensional internal node	52
7.2	Two-dimensional surface node	55
7.3	Two-dimensional external corner node	57
7.4	Two-dimensional internal corner node	58
7.5	Temperature profile for clean anode without steel yoke	60
7.6	Temperature of point in carbon for clean anode without steel yoke .	61
7.7	Two-Dimensional approximation of butt	62
7.8	Temperature profile for a clean anode with steel voke	66

7.9	Temperature of point in carbon for a clean anode with a steel yoke	67
7.10	Temperature profile in carbon for a dirty anode without steel yoke .	68
7.11	Temperature of point in carbon for a dirty anode without steel yoke	69
7.12	Temperature of point in bath for a dirty anode without steel yoke .	69
7.13	Temperature profile for a dirty anode with steel yoke	70
7.14	Temperature of point in carbon for a dirty anode with steel yoke	71
7.15	Temperature of point in bath for a dirty anode with steel yoke	71
8.1	Three-dimensional internal node	74
8.2	Three-dimensional internal corner node	76
8.3	Three-dimensional internal edge node	78
8.4	Three-dimensional external corner/surface node	80
8.5	Three-dimensional surface node	82
8.6	Three-dimensional internal edge/surface node	85
8.7	Three-dimensional external edge node	87
8.8	Three-dimensional external corner node	89
8.9	Three-dimensional approximation of a quarter anode	91
8.10	Temperature profile for a clean anode	99
8.11	Cross section of temperature through clean anode	100
8.12	Temperature profile for a dirty anode	101
8.13	Cross section of temperature through dirty anode	102
8.14	Temperature of point in carbon for clean and dirty anode	103
8.15	Temperature of point in bath dirty anode	103

List of Tables

2.1 Natural Convection Heat Transfer Rates for rectangular anode		
	sphere (kW)	7
2.2	Heat Transfer Rates for sphere (kW) \hdots	9
6.1	Temperature at surface and centre for various physical and thermal	
	properties	43
6.2	Temperature at surface and centre for various grid and timestep sizes	50