Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Atmospheric Correction of New Zealand Landsat Imagery

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Philosophy in Earth Science

at Massey University, Palmerston North, New Zealand

Sam Stafford Gillingham

2002

ii

Abstract

In this study, MODIS data for New Zealand was downloaded and evaluated as input to the 6S atmospheric correction model. Data for one year were downloaded for aerosols, water vapour and ozone and trends of this data were studied. The sensitivity of retrieved reflectance of several targets to changes in the atmospheric components as seen in the MODIS data were also analysed. Several methods were developed for using this data for atmospheric correction and the output compared to a commercial atmospheric correction package (ATCOR 2).

In addition, ground measurements were used to confirm the accuracy of the MODIS data. This involved both data obtained from NIWA and readings taken with a hand held MICROTOPS instrument. These readings showed that the MODIS data has some in-accuracies. This can result in a significant error in the retrieved reflectance, especially for darker targets, such as forest. Therefore caution should be exercised when using aerosol values from MODIS in an atmospheric correction. However, the results for water vapour and ozone were reasonably close, giving confidence for using MODIS ozone and water vapour in atmospheric correction.

Ground measurements were also taken of targets with a GER 2600 Spectroradiometer and these readings compared to the atmospheric corrections of the same targets. This confirmed the accuracy of the atmospheric correction methods. iv

Acknowledgements

I would firstly like to thank my supervisors James Shepherd and Mike Tuohy for their time and thoughtful advice throughout the preparation of this thesis.

Financial assistance was gratefully received from the Massey Masterate Scholarship and from my parents, who in addition provided much support and advice.

Thanks must also go to Landcare Research for providing facilities and equipment, and to all the people there who assisted me directly, and indirectly.

To NIWA, Lauder who provided me with the ozone data very promptly and willingly.

Lastly, I thank John Dymond and Olivia Hamid for their invaluable assistance with preparing the final drafts of this thesis.

vi

Contents

Abstract							
Ac	know	ledgem	ents	v			
1	Intro	Introduction					
	1.1	Aim .		1			
	1.2	The Te	erra Satellite	4			
	1.3	MODI	S	5			
	1.4	Aerosc	bls	6			
	1.5	Water	Vapour	8			
	1.6	Ozone		9			
	1.7	Other A	Atmospheric Constituents	10			
	1.8	Landsa	at7	13			
	1.9	Landca	are Research	15			
2	Met			17			
	2.1	Proces	sing the MODIS data	17			
		2.1.1	Downloading the Data	17			
		2.1.2	Extracting the Data	17			
		2.1.3	Rectifying the data	18			
		2.1.4	Calculating the cloud mask	19			
		2.1.5	Managing the data	19			
		2.1.6	Obtaining statistics	20			
		2.1.7	Processing data for each product	21			
	2.2	Sensiti	vity Analysis with 6S	23			
	2.3	Ground	d Atmosphere Measurements	25			
		2.3.1	Measuring Aerosol Optical Depth	27			
		2.3.2	Setting up the Langley Plot	29			

CONTENTS

		2.3.3	Problems with the 320nm data	31
		2.3.4	Comparison with MODIS	31
		2.3.5	MICROTOPS Ozone and Water Vapour data	32
		2.3.6	NIWA Ozone and Water Vapour	32
	2.4	Apply	ing an Atmospheric Correction	34
		2.4.1	Spatial Atmospheric Correction	34
		2.4.2	Simple Atmospheric Correction	36
		2.4.3	Atmospheric Correction using Monthly Composites	37
		2.4.4	Lauder Data Based Atmospheric Correction	37
	2.5	Atmos	pheric Correction using ATCOR	38
		2.5.1	How it works	38
		2.5.2	An atmospheric correction	39
	2.6	Groun	d Cover Measurements	41
		2.6.1	The Spectroradiometer Instrument	42
		2.6.2	Ground cover selection	44
		2.6.3	Applying the Landsat filter function	45
3	Resi	ılts		47
	3.1	MODI	S Results	47
		3.1.1	Aerosol Results	47
		3.1.2	Water Vapour Results	51
		3.1.3	Ozone Results	51
	3.2		Ozone Results	51 55
	3.2			
	3.2	Sensiti	ivity Analysis Results	55
	3.23.3	Sensiti 3.2.1 3.2.2	ivity Analysis Results	55 56
		Sensiti 3.2.1 3.2.2	ivity Analysis Results	55 56 66
		Sensiti 3.2.1 3.2.2 Groun	ivity Analysis Results	55 56 66 72
		Sensiti 3.2.1 3.2.2 Groun 3.3.1	ivity Analysis Results	55 56 66 72 72
		Sensiti 3.2.1 3.2.2 Groun 3.3.1 3.3.2	ivity Analysis Results	55 56 66 72 72 73
		Sensiti 3.2.1 3.2.2 Groun 3.3.1 3.3.2 3.3.3	ivity Analysis Results	55 56 66 72 72 73 77
		Sensiti 3.2.1 3.2.2 Groun 3.3.1 3.3.2 3.3.3 3.3.4	ivity Analysis Results	55 56 66 72 72 73 73 77 78
		Sensiti 3.2.1 3.2.2 Groun 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	ivity Analysis Results	55 56 66 72 72 73 77 78 78 78
	3.3	Sensiti 3.2.1 3.2.2 Groun 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	ivity Analysis Results	55 56 72 72 73 77 78 78 80
	3.3	Sensiti 3.2.1 3.2.2 Groun 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 Comp:	ivity Analysis Results	55 56 66 72 73 73 77 78 78 80 81

		3.5.1	Test reading		87
		3.5.2	The Hockey Pitch		88
		3.5.3	Lake Horowhenua		91
4	Disc	ussion			93
	4.1	MODI	IS data		93
	4.2	Sensit	tivity Analysis with 6S	•	95
	4.3	Groun	nd Atmosphere Measurements		96
	4.4	Metho	ods of Atmospheric Correction	• •	99
	4.5	Compa	parison with Ground Readings	• •	100
5	Con	clusion	and Future Work		103
	5.1	Conclu	usion		103
	5.2	Future	e Work		105
A	Refe	erence S	Spectra		107
Bi	bliog	raphy			113

CONTENTS

List of Figures

1.1	Spectral Transmittance of H_2O [46]	9
1.2	Spectral Transmittance of Ozone [46].	11
1.3	Spectral Transmittance of carbon dioxide [46]	12
1.4	The response of the ETM+ sensor aboard Landsat7 excluding Band 6	
	and 8	14
2.1	Data Processing steps for each Data Layer (Aerosols, Water Vapour	
	and Ozone)	22
2.2	View of MICROTOPS instrument (top) and operation on the roof of	
	Landcare building (bottom).	26
2.3	Sun position for Langley readings.	28
2.4	Sun Elevation for Massey University for the morning of 30 April 2002.	30
2.5	Comparison of different Atmospheric Correction Techniques	35
2.6	Spatial Atmospheric Correction Process.	35
2.7	Screen shot of ATCOR 2 Spectra Module	42
2.8	The GER 2600 instrument mounted on its tripod.	43
3.1	Monthly Aerosol Composites	48
3.2	Aerosol Optical Depth for New Zealand over one year.	49
3.3	Spatial and temporal variations in Aerosol Optical Depth over one year.	50
3.4	Apparent visibility over one year	50
3.5	Monthly Water Vapour Composites	52
3.6	Precipitable Water Vapour for New Zealand over one year.	53
3.7	Spatial and Temporal variations of Water Vapour over one year	53
3.8	Monthly Ozone Composites	54
3.9	Ozone for New Zealand for one year	55
3.10	Spatial and Temporal variations in Ozone over one year.	56

3.11	Selected Targets in December 2000 Landsat Scene (Red=Band 4, Green=E	Band
	5, Blue=Band 3)	57
3.12	Close up of Selected Targets in December 2000 Landsat Scene	58
3.13	Specific Humidity vs Altitude for Paraparaumu	59
3.14	Variation in Forest Target due to Aerosol.	60
3.15	Variation in Pasture Target due to Aerosol	61
3.16	Variation in Soil Target due to Aerosol.	61
3.17	Variation in Forest Target due to Water Vapour.	63
3.18	Variation in Pasture Target due to Water Vapour	63
3.19	Variation in Soil Target due to Water Vapour.	64
3.20	Variation in Forest Target due to Ozone.	64
3.21	Variation in Pasture Target due to Ozone.	65
3.22	Variation in Soil Target due to Ozone.	65
3.23	Variation in Forest Target due to Aerosol quantities in New Zealand.	67
3.24	Variation in Pasture Target due to Aerosol quantities in New Zealand.	67
3.25	Variation in Soil Target due to Aerosol quantities in New Zealand	68
3.26	Variation in Forest Target due to Water Vapour quantities in New Zealand.	69
3.27	Variation in Pasture Target due to Water Vapour quantities in New	
	Zealand	69
3.28	Variation in Soil Target due to Water Vapour quantities in New Zealand.	70
3.29	Variation in Forest Target due to Ozone quantities in New Zealand	70
3.30	Variation in Pasture Target due to Ozone quantities in New Zealand.	71
3.31	Variation in Soil Target due to Ozone quantities in New Zealand	71
3.32	Langley plot for readings taken on 16 May at 1020nm	74
3.33	Langley plot for readings taken on 16 May at 320nm	74
3.34	Langley plot readings taken on 10 August at 1020nm	75
3.35	Langley plot readings taken on 29 August at 1020nm	76
3.36	Langley plot readings taken on 9 October at 1020nm	76
3.37	NIWA and MODIS data for Paraparaumu.	79
3.38	Ozone recorded at Lauder compared to MODIS	81
3.39	Original Landsat subset (left) and spatially atmospherically corrected	
	scene (right). Bands 1, 2 and 3	82
3.40	Landsat Extract including Palmerston North.	83
3.41	Selected Targets from the Landsat Extract.	84
3.42	Test run of the GER 2600.	88

3.43	Close up of Hockey ground with GPS positions overlaid.	•	·	•	 89
A.1	Reference Spectra for Artificial Hockey Pitch (GER)				 108
A.2	Reference Spectra for Manuka (GER)				 108
A.3	Reference Spectra for Regrowing Bush (GER)	•			 109
A.4	Reference Spectra for Pine (GER)				 109
A.5	Reference Spectra for Soil (GER)				 110
A.6	Reference Spectra for Asphalt (GER)				 110
A.7	Reference Spectra for a Hokowhitu Lagoon (GER). \ldots				 111
A.8	Reference Spectra for Sea (ATCOR)	•			 111
A.9	Reference Spectra for Concrete (GER).				 112
A.10	Reference Spectra for Grass (GER)				 112

LIST OF FIGURES

I.