

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Complexity and Maintenance: A Comparative Study of

Object-Oriented and Structured Methodologies

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Business Studies

in Information Systems at

Massey University

Michael Andrew Bailey

1996

ORIGINAL

ABSTRACT

Maintenance has been found to be one of the most expensive phases in the life of an information system. It has been suggested that the use of object-oriented methods instead of traditional structured methods may be one way of reducing the cost of maintenance required for an information system.

This thesis is an attempt to determine whether the object-oriented approach does in fact undergo a relatively smaller increase in complexity when subjected to a change in specifications than a similar system that is developed using a "structured methodology", and is therefore easier to maintain.

The methodologies used in this study were Yourdon's (1989) Modern Structured Methodology and Booch's (1994) Object-Oriented methodology. The analysis phase of both methodologies were applied to the same case study twice in order to evaluate the effects of a change in the system's specifications.

Once the two models for each methodology were complete, various metrics were applied to the structured system and a separate set of metrics were applied to the object-oriented system. The results of the models and the metrics were then analysed and validated in order to determine which system suffered a smaller proportional increase in complexity as a result of the changes to the system.

It was found that overall, the object-oriented system proved to undergo a smaller increase in complexity, and it was therefore easier to maintain as a result of the changes than the structured system.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my Thesis Supervisor, Dr. Richard (Dick) Whiddett for providing invaluable assistance and support throughout the entire preparation of this Thesis. I am very grateful for his input into this thesis.

I would like to thank Mr. Barry Jackson for letting me borrow a guide on how to use Oracle's CASE tool. Without this I would not have been able to complete the structured models. I am also grateful for being able to use the Trusty Furniture Company case study.

I would also like to thank the students who provided the two structured systems used in the validation of this study.

A special thanks to my family for putting up with me for yet another year.

Finally, I would like to thank everyone else who has helped me during the preparation of this thesis who I haven't specifically mentioned (you know who you are).

Rational Rose and Rational Rose/C++ are trademarks of Rational Corporation

Oracle CASE is a trademark of Oracle Corporation

TABLE OF CONTENTS

ABST	FRACT			ï
ACK	NOWL	EDGEMENTS		iii
TABI	LE OF (CONTENTS		iv
LIST OF FIGURES				
LIST	OF TA	BLES		xiv
CHAI	PTER 1	: INTRODUCTION		1
1.1	Backg	ground		1
1.2	Thesis	S		1
1.3	Metho	odology		2
1.4	Struct	ture of the Thesis		4
CHAI	PTER 2	: OVERVIEW OF MAINTENANCE AND		
		MEASUREMENT		6
2.1	Introd	luction		6
2.2	Defini	itions of Maintenance		6
2.3	Defini	itions of Maintainability		8
2.4	Overv	view of Maintenance		10
	2.4.1	Cost of maintenance		10
	2.4.2	Concepts of maintenance		11
	2.4.3	Obsolescence and maintenance		12

1.

2.

	2.4.4	Strategies to remedy obsolescence	13
		2.4.4.1 Restoration	14
		2.4.4.2 Expansion	14
		2.4.4.3 Elimination	14
		2.4.4.4 Replacement	15
	2.4.5	Non-monetary costs of maintenance	15
	2.4.6	Types of maintenance	16
		2.4.6.1 Corrective maintenance	17
		2.4.6.2 Adaptive maintenance	17
		2.4.6.3 Perfective maintenance	18
		2.4.6.4 Preventive maintenance	18
	2.4.7	An alternative categorisation of maintenance	19
		2.4.7.1 Corrective maintenance	19
		2.4.7.2 Deferred maintenance	20
		2.4.7.3 Preventive maintenance	20
		2.4.7.4 Emergency maintenance	21
		2.4.7.5 File maintenance	21
		2.4.7.6 Program maintenance	22
		2.4.7.7 Scheduled maintenance	22
2.5	System	ns Maintenance Lifecycle	23
	2.5.1	Record and assign	25
	2.5.2	Analyse and approve	26
	2.5.3	Design and code	26
	2.5.4	Test and train	27
	2.5.5	Implement and monitor	28
2.6	Measu	uring Maintenance	29
	2.6.1	Methodology independent metrics	29
		2.6.1.1 Number of changes	29
		2.6.1.2 Other methods	30

	2.7	Measuring Object-Oriented Systems	31
		2.7.1 MOOSE	32
		2.7.1.1 Weighted methods per class	32
		2.7.1.2 Depth of inheritance tree	34
		2.7.1.3 Number of children	36
		2.7.1.4 Coupling between objects	37
		2.7.1.5 Response for a class	38
		2.7.1.6 Lack of cohesion in methods	39
	2.8	Measuring Structured Systems	41
		2.8.1 McCabe's cyclomatic complexity	41
	2.9	Comparisons Between the Metrics	42
	2.10	How this Overview Relates to the Thesis	45
	2.11	Summary	45
3.	CHAI	PTER 3. THE CASE STUDY	47
	3.1	Introduction	47
	3.2	The Trusty Furniture Company Case Study	47
	3.3	Description of the Changes Made to the Case Study	50
4.	CHAI	PTER 4. STRUCTURED ANALYSIS DEFINITIONS AND	
		TECHNIQUES	52
	4.1	Introduction	52
	4.2	Advantages of Structured Methods	53
	4.3	Disadvantages of Structured Methods	54
	4.4	Structured Analysis Definitions	56
		4.4.1 Processes	56
		4.4.2 Dataflows	57
		4.4.3 Datastores	58
		4.4.4 Terminators	58
		4.4.5 Entities	59
		446 Relationships	60

vi

	4.5	Overv	view of Yourdon's (1989) Modern Structured Methodology	61
		4.5.1	The dataflow diagram	62
			4.5.1.1 Processes	63
			4.5.1.2 Terminators	64
			4.5.1.3 Datastores	65
			4.5.1.4 Dataflows	65
		4.5.2	The entity relationship diagram	67
			4.5.2.1 Entities	67
			4.5.2.2 Relationships	69
	4.6	Summ	ary	69
5.	CHAP	TER 5.	THE CREATION OF A STRUCTURED MODEL	70
	5.1	Introd	uction	70
	5.2	Staten	nent of Purpose	70
	5.3	Event	List	71
	5.4	Devel	opment of an Entity Relationship Diagram	71
		5.4.1	Identifying the entities	72
		5.4.2	Identifying the relationships	72
		5.4.3	Identifying the attributes	73
	5.5	Devel	opment of a Context Diagram	73
		5.5.1	Identifying the external entities	73
		5.5.2	Identifying the dataflows	74
	5.6	Devel	opment of the Event Response Diagrams	74
		5.6.1	Identifying datastores	75
		5.6.2	Creation of an unlevelled dataflow diagram	75
	5.7	Levell	ing the Dataflow Diagram	76
		5.7.1	Level 0	76
		5.7.2	Checking the dataflow diagrams	77

5.8	Imple	menting Changes to the System	78
	5.8.1	Creating a new event	78
	5.8.2	Modifying the entity relationship diagram	78
	5.8.3	Modifying the dataflow diagram	79
	5.8.4	Completing the changes	79
5.9	Applie	cation of Metrics to the System	80
	5.9.1	Applying McCabe's cyclomatic complexity metric	80
	5.9.2	Applying the coupling between objects metric	81
5.10	Summ	nary	82
CHAP	TER 6	. OBJECT-ORIENTED DEFINITIONS AND	
		TECHNIQUES	84
6.1	Introd	uction	84
6.2	What	Does Object-Oriented Mean?	84
6.3	Advar	ntages of Object-Oriented Methods	86
6.4	Disad	vantages of Object-Oriented Methods	88
6.5	Basic	Object-Oriented Concepts	89
	6.5.1	Objects	90
	6.5.2	Classes	92
	6.5.3	Types	94
	6.5.4	Abstraction	95
	6.5.5	Encapsulation	96
	6.5.6	Inheritance	98
	6.5.7	Polymorphism	99
6.6	Overv	iew of Booch's Methodology	100
	6.6.1	Dimensions of analysis and design	101
	6.6.2	Class diagrams	105
	6.6.3	Object diagrams	107
	6.6.4	Interaction diagrams	109
6.7	Booch	: The Rational Approach	111
	6.7.1	Requirements analysis	111
	6.7.2	Domain analysis	112

6.

viii

6.8	Summary

7.	CHA	PTER 7	. THE PROCESS OF CREATING AN OBJECT-OR	IENTED
			MODEL	115
	7.1	Introd	luction	115
	7.2	Devel	opment of the Initial Class Diagram	115
		7.2.1	Identifying the key classes	115
		7.2.2	Identifying the relationships between classes	116
			7.2.2.1 Identifying inheritance relationships	116
			7.2.2.2 Identifying uses relationships	117
			7.2.2.3 Identifying has relationships	118
			7.2.2.4 Identifying association relationships	119
		7.2.3	Defining classes and relationships	120
	7.3	Devel	opment of the Interaction Diagrams	120
		7.3.1	Identifying classes and objects	120
		7.3.2	Identifying methods	121
		7.3.3	Adding scripts to the diagram	121
	7.4	Devel	opment of the Object Diagrams	122
	7.5	Why t	he Module and Process Diagrams Were Not Done	122
	7.6	Check	ing the Model for Consistency	123
	7.7	Makin	ng Changes to the Object-Oriented System	123
		7.7.1	Modifying the system function statement	123
		7.7.2	Identifying the new classes and relationships	124
		7.7.3	Creating a new interaction diagram	125
		7.7.4	Generating a new object diagram	125
	7.8	Apply	ing the MOOSE Metric Set	126
		7.8.1	Depth of inheritance tree	126
		7.8.2	Number of children	127
		7.8.3	Weighted methods per class	128
		7.8.4	Coupling between objects	129
		7.8.5	Response for a class	130
		7.8.6	Lack of cohesion in methods	131

	7.9 Ap	plying	MOOSE to the Modified System	133
	7.10	Summ	ary	133
8.	CHAP	TER 8.	RESULTS	135
	8.1	Introd	uction	135
	8.2	How (Comparisons Were Made	135
	8.3	Struct	ured Results	136
		8.3.1	Complexity of the dataflow diagram	136
			8.3.1.1 Analysis of the dataflow diagram results	137
		8.3.2	Complexity of the entity relationship diagram	138
			8.3.2.1 Analysis of the entity relationship diagram results	139
	8.4	Object	t-Oriented Results	141
		8.4.1	Analysis of the weighted methods per class results	142
		8.4.2	Analysis of the depth of inheritance tree results	144
		8.4.3	Analysis of the number of children results	146
		8.4.4	Analysis of the coupling between objects results	147
		8.4.5	Analysis of the response for a class results	149
		8.4.6	Analysis of the lack of cohesion in methods results	151
	8.5	Compa	arisons Between the Structured and Object-Oriented Models	154
		8.5.1	Comparisons between the coupling between objects results	154
		8.5.2	Comparing coupling between objects on an individual basis	155
	8.6	Valida	tion of the Metrics Used in this Study	156
		8.6.1	Structured metrics validation	157
			8.6.1.1 Dataflow diagrams	157
3			8.6.1.2 Entity relationship diagrams	158
		8.6.2	Object-oriented metrics validation	161
	8.7	Model	Validation	162
		8.7.1	Structured model validation	163
			8.7.1.1 Dataflow diagram validation	163
			8.7.1.2 Entity relationship diagram validation	170
		8.7.2	Object-oriented model validation	172
	8.8	Summa	ary	176

х

9.	CHA	PTER 9	. DISCUSSION	178
	9.1	Introd	luction	178
	9.2	178		
	9.3	Weigh	nting Many-to-Many Relationships	180
	9.4	GQM		181
		9.4.1	Goal	182
		9.4.2	Question	182
		9.4.3	Metric	182
	9.5	Altern	ative Metrics	184
		9.5.1	Token counts	184
		9.5.2	Information flow complexity	186
	9.6	Proble	ems With the Study	187
	9.7	Discus	ssion of Results	188
	9.8	Summ	ary	191
10.	CHA	PTER 10	0. CONCLUSIONS AND FUTURE WORK	193
	10.1	Conch	usions	193
	10.2	Future	e Work	195
11.	APPE	NDICE	S	

APPENDIX A:	Outputs from Structured Model Before Changes	197
APPENDIX B:	Outputs from Structured Model After Changes	213
APPENDIX C:	Structured Model Metric Results	230
APPENDIX D:	Structured Model Validation Results	233
APPENDIX E:	Outputs from Object-Oriented Model Before	
	Changes	236
APPENDIX F:	Outputs from Object-Oriented Model After	
	Changes	262
APPENDIX G:	Object-Oriented Model Metric Results	292
APPENDIX H:	Object-Oriented Model Validation Results	295
APPENDIX I:	Comparison of CBO Results on an Individual	
	Basis	298

12. BIBLIOGRAPHY

300

LIST OF FIGURES

Figure 1:	The Systems Maintenance Life Cycle	23
Figure 2:	Example of a Process	63
Figure 3:	Example of an External Entity	64
Figure 4:	Example of a Datastore	65
Figure 5:	Example of a Dataflow	66
Figure 6:	Example of a Composite Dataflow	66
Figure 7:	Example of an Entity	68
Figure 8:	Example of the Notations Used to Represent a Relationship in	
	this Study	69
Figure 9:	The Models of Object-Oriented Development	101
Figure 10:	Class Icon	106
Figure 11:	Example of an Interaction Diagram	110
Figure 12:	The Inheritance Relationship	117
Figure 13:	The Uses Relationship	118
Figure 14:	The Has Relationship	119
Figure 15:	The Association Relationship	120
Figure 16:	Depth of Inheritance Tree for the class Order Document Set	127
Figure 17:	Number Of Children for the class Order	128
Figure 18:	Coupling Between Objects for the class Customer	130

LIST OF TABLES

Table 1:	Results of McCabe's Complexity Metric Before and After Changes	5
	Were Made to the Structured Model	136
Table 2:	Results of the Coupling Between Objects Metric Applied to the En	tity
	Relationship Diagram Before and After Changes Were Made to the	9
	Structured System	138
Table 3:	Summary of the Results From the MOOSE Metric Set Before and	After
	Changes Were Made to the Object-Oriented Model	142
Table 4:	Results of McCabe's Complexity Metric After Being Applied to the	e
	Student Models in Comparison to the Trusty Furniture Company's	
	Order Processing System	158
Table 5:	Results of the Coupling Between Objects Metric After Being Appli	ed to
	the Student Models in Comparison to the Trusty Furniture Company	ıy's
	Order Processing System	160
Table 6:	Summary of the Results From the Application of the MOOSE Metr	rics
	to Booch's (1994) Ordering System in Comparison to the Trusty	
	Furniture Company's Order Processing System	161
Table 7:	Summary of the Terminators Used on the Context Diagram	164
Table 8:	Summary of the Processes Used on the Lowest Level of the Datafle	ow
	Diagrams	166
Table 9:	Summary of the Entities Used in the Entity Relationship Diagrams	170
Table 10:	Summary of the Equivalent Classes Used in the Class Diagrams	173

xiv