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Abstract 

This thesis reviews and develops modern advanced statistical methodology for 

sampling and modelling count data from marine ecological studies, with specific applications 

to quantifying potential direct and indirect effects of marine reserves on fishes in north 

eastern New Zealand. Counts of snapper (Pagrus auratus: Sparidae) from baited underwater 

video surveys from an unbalanced, multi-year, hierarchical sampling programme were 

analysed using a Bayesian Generalised Linear Mixed Model (GLMM) approach, which 

allowed the integer counts to be explicitly modelled while incorporating multiple fixed and 

random effects. Overdispersion was modelled using a zero-inflated negative-binomial error 

distribution. A parsimonious method for zero inflation was developed, where the mean of the 

count distribution is explicitly linked to the probability of an excess zero. Comparisons of 

variance components identified marine reserve status as the greatest source of variation in 

counts of snapper above the legal size limit. Relative densities inside reserves were, on 

average, 13-times greater than outside reserves.  

Small benthic reef fishes inside and outside the same three reserves were surveyed to 

evaluate evidence for potential indirect effects of marine reserves via restored populations of 

fishery-targeted predators such as snapper. Sites for sampling were obtained randomly from 

populations of interest using spatial data and geo-referencing tools in R—a rarely used 

approach that is recommended here more generally to improve field-based ecological 

surveys. Resultant multispecies count data were analysed with multivariate GLMMs 

implemented in the R package MCMCglmm, based on a multivariate Poisson lognormal error 

distribution. Posterior distributions for hypothesised effects of interest were calculated 

directly for each species. While reserves did not appear to affect densities of small fishes, 

reserve-habitat interactions indicated that some endemic species of triplefin (Tripterygiidae) 

had different associations with small-scale habitat gradients inside vs outside reserves. These 
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patterns were consistent with a behavioural risk effect, where small fishes may be more 

strongly attracted to refuge habitats to avoid predators inside vs outside reserves.  

The approaches developed and implemented in this thesis respond to some of the 

major current statistical and logistic challenges inherent in the analysis of counts of 

organisms. This work provides useful exemplar pathways for rigorous study design, 

modelling and inference in ecological systems. 
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