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Abstract 

Pyroclastic density currents (PDCs) are the most dangerous mass flows on Earth. Yet they 

remain poorly understood because internal measurements and observations are hitherto non-

existent. In this thesis, the first measurements and views into experimental large-scale PDCs 

synthesized by “column collapse” provide insights into the internal structure, transport and 

emplacement dynamics of dense PDCs or pyroclastic flows. 

While from an outside point of view, PDCs resemble dilute gravity currents, the internal flow 

structure shows longitudinal and vertical complexities that greatly influence the PDCs‟ 

propagation and emplacement dynamics. Internal velocity and concentration profiles from 

direct observations provide the evidence of an unforeseen intermediate zone that plays an 

important role into the transfer of mass from the ash-cloud to the underflow. The intermediate 

zone is a “dense suspension” where particle cluster in bands to form mesoscale structures. 

These reduce particle drag and yield an extreme sedimentation rate of particles onto the 

newly-formed underflow. These findings call into question the existing paradigm of a 

continuous vertical concentration profile to explain the formation of massive layers and an 

underflow from ash-clouds. Instead, a sharp concentration jump occurs between the 

intermediate zone, with concentrations of the order of few volume percent, and the 

underflow, with concentrations of c.45%. 

PDCs were found to be composed of 4 main zones identified as the underflow, and the ash-

cloud head, body and wake. Following the evolution of the PDC structure over time allows 

the formation of a complex ignimbrite deposit sequence to be uncovered, reproducing 

experimentally the “standard ignimbrite sequence” reported from field studies. Experiments 

revealed that each flow zone deposited the particulate load under contrasting emplacement 

timescales (spanning up to 5 orders of magnitude), which are primarily controlled by the 

concentration of the zone.  

The ash-cloud head is the most dynamic zone of the PDC, where proximally mass is 

intensively transferred downward and feeds the underflow front, while at all times, the finest 

particles are entrained upward and feed the wake through detachment of large Kelvin-

Helmholtz instabilities. Subsequently, kinematic coupling between the moving underflow and 

overriding ash-cloud leads to a forced-supercriticality, preferentially affecting the head. The 

wide range of particle sizes and densities yield a spectrum of gas-transport behaviours 

ranging from a poorly coupled and rapid-sedimenting mesoscale regime up to a 

homogeneously coupled long-lived suspending regime. 

Internal velocity and concentration profiles illuminate the role of boundary velocity, which 

yields forced-acceleration of the ash-cloud. Kinematic coupling of the ash-cloud with the 

underflow induces a velocity at the lower flow boundary, while shear stress at the ash-

cloud/underflow wanes and results in the shrinking of the maximum velocity and 

concentration heights. Therefore, the ash-cloud can reach high velocities and multiply its 

destruction potential.  
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The experimental work presented in this thesis provides the first datasets of the internal 

physical properties of PDCs, which can be used to test the validity of current numerical 

models and highlight their limitations.  

This thesis also presents the study of a small hydrothermal blast that occurred at Mt. 

Tongariro, New Zealand, on the 6
th

 of August 2012. The study of the blast is subdivided into 

two phases: the PDC phase and the ballistic phase. The detailed study of the PDC along the 

main propagation axis highlighted the role of the longitudinal zoning of the current, which 

was reflected in the complex tripartite deposit architecture.  

The study of the blast-derived ballistic crater field revealed a zone of high crater density that 

was related to the focus of ballistic trajectories around the main explosion direction. Simple 

inverse ballistic modelling provided evidence for a shallow blast (c. 5° above horizontal) 

from Te Maari. Furthermore, a comparison of ballistic block lithologies confirmed the origin 

of the elongated succession of craters or fissures formed by successive blasting during the 

eruption. 
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diameter. * Estimates of the range of negative values  of the Richardson number 

corresponding to hot PDCs with buoyancy reversal is based on the study of volcanic plume 

(Carazzo et al., 2015) and PDCs (Dufek, 2016). 165 

 

Supplementary Table 5.1. Bulk flow scaling of Natural dilute PDCs
 
(Roche

 
2012) and PELE 

experimental currents. Where   and   are characteristic velocity and length scales of the 

flow.   corresponds to the dynamic viscosity of the flow.   is the mixture density.   is the 

flow density and    is the ambient medium density. D is the particle diameter. .................. 199 

Supplementary Table 5.2. Dense underflow scaling of Natural dilute PDCs
 
(Burgisser and 

Bergantz, 2005) and PELE experimental currents. With    and    the particle and gas 

density,   the shear rate, d the particle diameter, hc  the current height, g the acceleration of 

gravity. D is the particle diameter. c denotes the flow concentration during propagation, co is 

the maximum concentration at loose packing,   is the shear rate. k is the permeability of the 

granular medium. Rep is the particle Reynolds number defined as follows: Rep = 2DU   /  .
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