Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Extracytoplasmic Stress Responses Induced by a Model Secretin

A dissertation presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Biochemistry

At Massey University, Manawatū,

New Zealand

Julian Spagnuolo 2015

Abstract

Pathogenic bacteria export large proteins and protein complexes, including virulence factors, using dedicated transenvelope multiprotein machinery, collectively called secretion systems. Four of these protein export machines found in Gram-negative bacteria, type 2/3 secretion systems, filamentous phage assembly-secretion system and the type 4 pilus assembly system contain large homologous gated channels, called secretins, in the outer membrane. Secretins are radially symmetrical homomultimers (luminal diameter 6-8 nm) interrupted by an internal septum or gate. Expression of these channels imposes a fitness cost to bacteria. While stress induced by model secretin pIV has been previously investigated using microarrays, this thesis is the first RNAseq characterisation of secretin stress responses. Furthermore, this is the first comparison of stress imposed by a closed-gate secretin (wildtype pIV), vs. an isogenic leaky-gate variant, the latter serving as a model of an open-gate substrate-secreting channel. The high sensitivity to changes in gene expression and low background noise of the RNA-seq approach have greatly expanded the known secretin stress responses to include the SoxS, CpxR and RcsB/RcsAB regulons, in addition to the known involvement of the Psp response. A synthetic lethality analysis of candidate genes in these pathways suggested that the leaky-gate secretins, besides rendering the Psp response essential for survival, also stimulate the SoxS and RcsB/RcsAB regulons for protection of the cells. Knowledge of the secretin stress expanded by this work helped identify potential targets for development of much-needed antibiotics against toxinsecreting Gram-negative bacteria.

Foreword & Acknowledgements

Bristling with anticipation, excitement and unbridled passion for science, a young man, longboard in hand, walked into an office, the first of many meetings to come. The seasoned scientist sitting across the table rebuffed his notion to save the world with 'super-phage' – bacteria evolve resistance too quickly. So began my journey, the start of my Masters degree which, would later weave into the, at times, perilous tale of my Doctorate.

As the months lapsed into years my ears dried, the salt hardened and increasingly I was left to my own devices, given such a free reign that, in my haste and lust, I quickly became lost in a myriad of leads, methodology and gene-regulation. I was rather lucky to have a mentor to pull me back on the path. In hindsight, I don't think it was easy to supervise me – Jasna, Murray, my vocabulary just isn't sufficient to express how important your support was.

Standing on the precipice of completion, I wonder just who I have done this for. Was this journey started and completed in the name of some Muse? Or was it for my own greater glory? Having stood on stage in various capacities I can safely say I do not care for glory, only acknowledgement of quality and substance. The Muses, well they disappear and reappear like the mist on the wind, I wish I could say I doubt they were important. Alas, they are attributable for waking parts of my mind that drove my journey and allow me to do the things I can. I won't name these people, but anytime I pick up a pipette or my pen I remember each and every one. To these people – this thesis is just as much yours as mine. Live long.

Abbreviations

ABC – ATP binding cassette

ATP – Adenosine triphosphate

BH – Benjamini-Hochberg multiple testing correction

BSA - Bovine serum albumin

cAMP - Cyclic adenosine monophosphate

cDNA - Complementary DNA

Cm – Chloramphenicol

CPS – Capsular polysaccharide

CV - Coefficient of variation

DE – Differential expression

DEPC - Diethyl pyrocarbonate

DNA - Deoxyribonucleic acid

EDTA – Ethylenediaminetetraacetic acid

ELISA – Enzyme linked immunosorbent assay

EM – Electron microscopy

EPS - Extracytoplasmic polysaccharide

FDR – False discovery rate

FFSS – Filamentous phage assembly/secretion system

G3P – Glucose-3-phosphate

Km - Kanamycin

IHF – Integration host factor

IM – Inner membrane

IPTG – Isopropyl β-D-1-thiogalactopyranoside

LPS – Lipopolysaccharide

NAD - Nicotinamide adenine dinucleotide

NADP – Nicotinamide adenine dinucleotide phosphate

OM – Outer membrane

OMP – Outer membrane protein

ONPG – Ortho-Nitrophenyl-β-galactoside

PCA – Principle component analysis

PEG – Polyethylene glycol

PGA – poly-β-1,6-N-acetylglucosamine

PMF – Proton motive force

POTRA – Polypeptide transport associated

PSP - Phage shock protein

PulD_{PBS} – Pilotin binding domain of PulD

RCF - Relative centrifugal force

RIB – Reiterative *ihf* bacterial interspersed mosaic element

RIN – RNA integrity number

ROS – Reactive oxygen species

RNA-seq – RNA sequencing

RNA - Ribonucleic acid

rRNA – ribosomal RNA

SDS – Sodium dodecyl sulfate

SPA – Single particle analysis

sRNA - Small RNA

T2SS – Type 2 secretion system

T3SS – Type 3 secretion system

T4PS – Type 4 pilus assembly system

TCA – Tricarboxylic acid cycle

Tet – Tetracycline

UAS – Universal activation sequence

UDP – Uridine diphosphate

List of Tables

Table 1: Bacterial strains used	68
Table 2: Plasmids used	69
Table 3: Properties of cells expressing pIV mutants	85

List of Figures

Figure 1: Structure of the Gram-negative cell wall and biogenesis
machinery 3
Figure 2: Overview of Type 2 and 3 Secretion Systems in contrast with the
filamentous phage assembly system 17
Figure 3: Cryo-EM and 3D reconstructions of PuID, InvG and pIV 19
Figure 4: Domain architecture of 4 secretins and the secretin homology
domain PFAM seed alignment 24
Figure 5: Organisation of the phage shock protein regulon and induction
of the Psp response 35
Figure 6: Regulation of the Rcs phosphorelay 42
Figure 7: Regulation of the sigma-E, Cpx and EnvZ/OmpR responses 44
Figure 8: Oxidative stress response pathways of Gram-negative bacteria.
Figure 9: Effect of pIV GATE mutations on the expression of PspA and
growth of <i>E. coli</i> K1508 88
Figure 10: Integrity of total RNA 91
Figure 11: Variability of Counts per gene within and across sample
replicates92
Figure 12: Variation of normalised transcript counts 94
Figure 13: Rate of false discovery within differentially expressed genes.

Figure 14: Comparison of significant differential gene expression in
response to the production of wildtype pIV or pIV-E292K
Figure 15: Heat map of significantly differentially expressed genes 108
Figure 16: PANTHER protein classifications of genes significantly
differentially expressed in response to pIV secretin stress 110
Figure 17: Differential expression of the Psp regulon during secreting
stress 114
Figure 18: Sigma-E and Cpx response pathways and differential
expression of the genes encoding the key regulators of these pathways.
Figure 19: Differential expression of the <i>ompR</i> regulon
Figure 20: Differential expression of the genes encoding regulators of the
sox and mar regulons 124
Figure 21: Differential expression of the genes controlling transcription of
the <i>rob</i> and <i>oxyR</i> regulons 125
Figure 22: Differential expression of the Mar/Sox/Rob-regulated genes 131
Figure 23: Differential expression of the oxyR regulatory network in
response to wildtype pIV 134
Figure 24: Differential expression of the OxyR regulatory network in
response to leaky mutant pIV-E292K 136
Figure 25: Differential expression of Rcs response regulators 140
Figure 26: Differential expression of RcsB and RcsAB regulons 143

igure 27: Differential expression of RcsAB-regulated capsule
oolysaccharide export systems 146
Figure 28: Differential expression of capsule export systems not regulated
oy RcsAB147
Figure 29: Differential expression of osmoprotectant transporters 151
Figure 30: Differential expression of the trehalose synthesis pathway 152
Figure 31: The roles of stress-induced or regulatory genes in survival of <i>E.</i>
coli K-12 under plV secretin stress163
Figure 32: The roles of stress-induced or regulatory genes in survival of <i>E.</i>
coli K12 under weak pIV secretin stress165
Figure 33: Differential expression of the CpxR regulatory network in
esponse to wildtype pIV 212
Figure 34: Differential expression of the CpxR regulatory network in
response to leaky mutant pIV-E292K214
Figure 35: Differential expression of genes regulated by the alternative
sigma factor, Sigma-E (RpoE) in response to wildtype pIV
Figure 36: Differential expression of genes regulated by the alternative
sigma factor, Sigma-E (RpoE) in response to leaky mutant pIV-E292K 219

Table of Contents

Abstract	i
Foreword & Acknowledgements	ii
Abbreviations	iii
List of Tables	vi
Table of Contents	x
1 Gram-negative Membrane Biology	1
1.1 The Outer Membrane	4
1.1.1 Function of Outer Membrane Proteins	4
1.1.2 Biogenesis of the Outer Membrane	7
1.1.2.1 Synthesis of Lipopolysaccharides	7
1.1.2.2 Shuttling Lipopolysaccharide to the OM	8
1.1.2.3 Targeting and assembly of outer membrane proteins	9
1.2 The Periplasm	11
1.3 The Inner Membrane	12
1.3.1 Phospholipid Synthesis	12
1.3.2 Inner Membrane Proteins	14
1.4 Type 2 and 3 secretion systems	15
1.4.1 pIV – a model secretin	18
1.4.2 The secretin C-terminal homology domain	26
1.4.3 Secretin OM targeting, folding and assembly	28
1.5 Extracytoplasmic Stress Responses	31
1.5.1 The Phage Shock Protein Response	33
1.5.2 The Regulation of capsular synthesis regulon	40

	1.5	5.3	The sigma-E stress response	46
	1.5	5.4	The Cpx stress response	47
	1.5	5.5	Osmotic shock responses	48
	1.6	Oxi	idative Stress Responses	50
	1.6	6.1	The Superoxide stress response	54
	1.6	6.2	The MarA Regulon	57
	1.6	6.3	The Rob Regulon	58
	1.6	6.4	The OxyR Regulon	60
	1.7	Adı	vantages of current generation RNA sequencing over micros	array
	techi	nolo	gies	60
	1.8	Ain	าร	62
2	Mat	teria	als and Methods	67
	2.1	Bad	cterial strains, plasmids and growth conditions	67
	2.2	Tot	al Cell Protein Extracts	71
	2.3	Enz	zyme Linked Immunosorbant Assay	71
	2.4	Clo	ning and DNA Manipulations	73
	2.5	Tot	al RNA Extraction	74
	2.6	RN	IA sequencing	76
	2.7	Bio	informatics and analysis of the sense transcriptome	77
	2.8	Syr	nthetic lethality and complementation	79
3	Che	nice	of the secretin leaky mutant for transcriptome analysis	and
			of the secretin stress transcriptome	
			aracterisation of the pIV secretin mutants	
			Comparison of leaky pIV mutants	
			perimental design of the secretin stress transcriptome analysis	
	イノ	r yr	Jeonneoral design of the secretin stress transcriptome analysis	A C

	3.2	2.1	Pre- and Post-sequencing Quality Control	89
	3.3	Dis	cussion	101
	3.3	3.1	pIV mutant characterisation	101
	3.3	3.2	Sampling time	101
	3.3	3.3	Transcriptome - quality assessment and preliminary analysis	102
4	Cha	arac	terisation of the secretin stress transcriptome	105
	4.1	Diff	ferential Gene Expression under secretin stress	105
	4.2	The	e Phage Shock Protein Response	112
	4.3	Sig	ma-E and Cpx stress responses	115
	4.4	Enι	vZ/OmpR response	119
	4.5	Oxi	idative stress responses	123
	4.6	Effe	ect of secretin production on the SoxS regulatory network	126
	4.7	Diff	ferential expression of the regulons controlled by SoxS, MarA, F	Rob
	and (Оху	R	127
	4.8	Ind	uction of the Rcs stress response	138
	4.9	Diff	ferential expression of the RcsB and RcsAB regulons	141
	4.10	Di	ifferential expression of transporters	145
	4.11	Di	iscussion	154
	4.12	Co	onclusion	156
5	Rol	es	of differentially expressed pathways in the survival	of
S	ecreti	n-p	roducing cells	161
	5.1	Dis	cussion	167
	5.2	Coi	nclusion	169
6	Dis	cus	sion	174
	6 1	Gal	neral discussion	174

	6.1.1	Psp response	175			
	6.1.2	Cpx Response	176			
	6.1.3	Rcs response	178			
	6.1.4	ROS responses	181			
	6.1.5	Implications	183			
ć	6.2 Co	nclusion	185			
6	6.3 Fu	ure Directions	187			
7	Refere	nces	190			
8	Appen	dix 1: Differential Expression of the CpxR regulon in r	esponse to			
wil	wildtype pIV212					
9	Appen	dix 2: Differential expression of the CpxR regulon in re	esponse to			
pΙ\	/-E292k		214			
10	Appe	ndix 3: Differential expression of the Sigma-E	regulatory			
net	work ir	response to wildtype pIV	216			
11	Appe	ndix 4: Differential expression of the Sigma-E	regulatory			
noi	work ir	response to pIV-E292K	218			