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Abstract 

In this dissertation, we present the research pathway to the design and implementation 
of a real-time vision-based gesture recognition system. This system was built based 
on three components, representing three layers of abstraction: i) detection of skin and 
localization of hand and face, ii) tracking multiple skin blobs in video sequences and 
finally iii) recognition of gesture movement trajectories. 
The adaptive skin detection, the first component, was implemented based on our 
novel adaptive skin detection algorithm for video sequences. This algorithm has two 
main sub-components: i) the static skin detector, which is a skin detection method 
based on the hue factor of the skin color, and ii) the adaptive skin detector which 
retrains itself based on new data gathered from movement of the user. The results of 
our experiments show that the algorithm improves the quality of skin detection within 
the video sequences. 
For tracking, a new approach for boundary detection in blob tracking based on the 
Mean-shift algorithm was proposed. Our approach is based on continuous sampling 
of the boundaries of the kernel and changing the size of the kernel using our novel 
Fuzzy-based algorithm. We compared our approach to the kernel density-based 
approach, which is known as the CAM-Shift algorithm, in a set of different noise 
levels and conditions. The results show that the proposed approach is superior in 
stability against white noise, and also provides correct boundary detection for 
arbitrary hand postures, which is not achievable by the CAM-Shift algorithm. 
Finally we presented a novel approach for gesture recognition. This approach 
includes two main parts: i) gesture modeling, and ii) gesture recognition. The gesture 
modeling technique is based on sampling the gradient of the gesture movement 
trajectory and presenting the gesture trajectory as a sequence of numbers . This 
technique has some important features for gesture recognition including robustness 
against slight rotation, a small number of required samples, invariance to the start 
position and device independence. For gesture recognition, we used a multi-layer 
feed-forward neural-network. The results of our experiments show that this approach 
provides 98.7 1 %  accuracy for gesture recognition, and provides a higher accuracy 
rate than other methods introduced in the literature. 
These components form the required framework for vision-based real-time gesture 
recognition and hand and face tracking. The components, individually or as a 
framework, can be applied in scientific and commercial extensions of either vision­
based or hybrid gesture recognition systems. 
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Chapter 1. Introduction 

The role of gesture on its own and the expressiveness it adds when used with verbal 

interaction, suggests that gesture recognition systems have the potential to open a new 

and effective communication channel in human-computer interaction. Gesture 

recognition systems identify human gestures and the information they convey. Hence, 

gesture can be used for controlling devices, games, PDAs, browsers, cell phones, and 

home appliances. Input devices which can provide information to a gesture 

recognition system are numerous. Vision system, data gloves, mouse, light-pen, 

joystick, track-ball ,  touch-tablet, foot controller, knee controllers, eye trackers, head 

trackers, data nose, and tongue-activated joysticks can be employed to provide input 

to a gesture recognizer [ 1 ] .  Animation creation, virtual reality, performance 

measurement, and movement analysis are some typical applications of gesture 

recognition systems. 

Gesture recognition systems are in some cases the optimal choice for the user and can 

potentially revolutionize some problem domains. For instance, physically disabled 

users frequently have difficulty providing the strength or precision necessary to use 

traditional computer input devices. Alternative non-verbal communications such as 
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eye blinks, fixated eye gaze, head motions, slight finger motion or other gestures can 

be employed to remediate these difficulties [2] .  

In addition to communicative applications of "gesture", some involuntary gestures 

may give clues to an underlying mental state [3-5] .  For example, drumming fingers 

on the table may indicate impatience or boredom, while rubbing the eyes might 

indicate that a person is tired. However, the exact impacts are yet unknown and the 

correlation between gesture and mental state is an ongoing research in behavioral 

science. In this context, it is worth pointing to Lu et al. ' s  work [6] . They used blob 

analysis of head and hands for deception detection. Their primary results show that 

this approach has the potential of exploring behavioral state identification in the 

detection of deception. Moreover, researchers are investigating an area in the brain ' s  

frontal cortex that interprets other people' s  action. In a study in the International 

School of Advanced Studies in Trieste, researchers used transcranial magnetic 

stimulation (TMS) for pinpointing the "centre of gesture recognition" in human brain. 

The research did so by sending TMS current through various likely points of the brain 

while the individuals were asked to watch a short film of someone picking up a box 

and guess how heavy it is .  It was discovered that estimates are widely inaccurate 

when TMS was delivered to the frontal cortex [7] . 

1 . 1  Approaches 

There are two distinctive approaches to hand and body-parts tracking. One approach 

is based on using position sensors attached to the body of the user or wearable 

devices. This approach is mostly used in virtual reality and recently in applications 
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which require high accuracy in detecting position and recognizing postures. Although 

this technology is commercially avai lable, it is yet too expensive to be accessible for 

a majority of computer users. Furthermore, approaches that require attachments to the 

body are considered more intrusive from the user's point of view. Hence, alternative 

approaches are sought by researchers to replace the sensor-based gesture recognition 

technology. 

Vision-based techniques provide alternatives for capturing human hand motion [8] ,  

and could be very cost effective and are nonintrusive. Therefore, vision-based hand 

and face tracking can be considered as an alternative for sensor-based gesture 

recognition .  In addition to being less intrusive, there are some scenarios where a 

vision-based gesture recognition system is possibly the only choice. For example, 

sterility constraint before operation limits a surgeon in touching mouse and keyboard. 

And this situation can be facilitated by applying gestural commands gesticulating in 

front of a video camera. 

Research on vision-based gesture recognition systems has shown promising results 

which has also made this exciting area of research an increasingly popular research 

topic .  Obviously, hands are the most frequent conveyor of gestures. Therefore, most 

of the research on gesture recognition has concentrated on hand gesture recognition. 

1 .2 Motivation 

Although gesture recognition systems like what was in the Sci-Fi movies such as 

"S 1 M0N" or "The minority report" are still far from reality, recent research on 
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applying hand and face tracking in the game environments is increasing. Sony and 

Microsoft by introducing their vision-enabled game consoles are trying to attract 

more gamers1 • Hence, game developers have started to take advantage of the newly 

introduced hardware, and are making their products "gesture-enabled". The virtual air 

guita? and the virtual basketball are instances of gesture-enabled game environments. 

Gesture recognition and body tracking has hit the commercial fitness market as well .  

One new such game is Y ourself!Fitness for Xbox and PlayStation which is a virtual 

personal trainer targeting women' s  fitness. This game adapts to the needs of the 

individual and offers a number of options based on the individual ' s  personal daily 

preferences .  Another potentially exciting fitness game that has been released is called 

EyeToy "Kinetic" from Sony Entertainment for PlayStation 2. This  game is played 

using a USB camera that superimposes and integrates the player into the scene on the 

monitor and tracks body movements. It can be used in a number of modes, including 

"combat mode" where a player must kick and punch virtual objects (in the air) as they 

are displayed and move about on the screen3 . However, the support for gesture 

recognition in these applications is limited to motion detection from specific view 

points. 

Vision-based gesture recognition requires tracking and interpreting postural and 

movement patterns of body parts being used for communication. The flexibility of the 

1 http://news.portal it.netlfu llnews M icrosoft-Ai ms-To-Challenge-Sony-E yeToy-With-X box-360-US B-Camera 1 340.html 

2 http://www.tekes.fi/eng/news/uutis tiedot.aso?id=5077 

3 Matt Slagle. "Video Game Review: Three video games to make you sweat." (New York: Associated Press, Nov 1 6, 2005, 
pg I )  
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human body and the difficulty to predict its movement when compared to a robot 

makes human body part tracking, and particularly hand tracking, a difficult task to 

perform. The hand itself is an articulated and complex object. In addition to its rigid 

transformation ,  it has 14 joints which provide a very large number of possible 

configurations. Therefore, the variability of its 2D projection onto an image makes 

its detection and classification a non-trivial task. Vision-based hand gesture 

recognition technology is still evolving with the availability of new hardware and user 

requirements, and is still an ongoing research. These facts are the main motivations 

for research in the modeling, analysis, and recognition of gestures. 

1 . 3 Thesis overview 

This section states the main contributions of this dissertation and draws the outline of 

its chapters. 

1.3.1 Contribution of this thesis 

The main contributions of this dissertation are: 

• A novel algorithm for adaptive skin detection in video sequences. 

• A new approach for estimating the boundaries of the kernel for blob tracking 

using the Mean-shift algorithm as a basis. 

• A technique for mode ling and recognition of pointing gestures in 2D space. 

Minor contributions include: 
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• Employing and comparing the efficiency of two methods of motion detection 

including the basic frame subtraction and LK-optical flow motion tracking in 

the adaptive skin detection algorithm. 

• Performing a pilot study on the gestura! behavior of a small group of primary 

school students in a math tutoring environment. 

• Design and implementation of three variances of the Fuzzy-based Mean-shift 

tracker for real-time tracking of multiple blobs in video sequences developed 

in this research. 

• Analysis of the Feed Forward ANN and choosing the optimum structure for 

classifying a 1 3  gesture alphabet. 

1 .3.2 Thesis outline 

Chapter 2 presents the literature review on vision-based gesture recognition and 

particularly with a focus on detection, tracking and recognition as primary building 

blocks of gesture recognition systems. 

In Chapter 3, the results of our pilot study on gestura! behavior of a small group of 

primary school students in a math tutoring environment are presented. The required 

relevant background introducing gesture as a behavioral phenomenon is also 

introduced in this chapter. 

In Chapter 4, a novel algorithm for adaptive skin detection in video sequences is  

presented. Additionally, the experiments and results of  employing two motion 

detection techniques on this algorithm are presented. 
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Chapter 5 describes a novel technique for estimating the boundaries of the kernel for 

real-time tracking using the Mean-shift algorithm as a basis .  Experiments and results 

demonstrating the robustness and stability of this technique in presence of various 

levels of white noise are presented in this chapter. In this chapter, also three instances 

of this  technique have been proposed and implemented. The first instance is for 

tracking of multiple skin blobs in video sequences. The second instance is for 

tracking flocks of skin blobs in video sequences. And, the third instance represents 

how to apply depth information for robust tracking and occlusion prevention. 

Chapter 6 presents a method for modeling pointing gestures in 2D space. Employing 

a supervised learning method for gesture recognition is also described. Moreover, the 

implementation of a computationally cost effective design is presented in this chapter. 

Finally, summary, conclusions and future work is presented in Chapter 7. 
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2. 1 Vision-based gesture recognition 

The following sections present an overview of the current state-of-the-art approaches 

to hand and face tracking and vision-based gesture recognition. Earlier reviews have 

been published by Daugman [9] , Pavlovic [ 10],  Wu [ 1 1 ] and Geer [2],  which 

indicates to us that there is still not a commonly accepted approach or set of specific 

techniques for vision-based gesture recognition. 

Studying possible scenarios which a user may interact with the system can help to 

identify the required processing channels and in choosing appropriate techniques. In 

this context, Wu and Huang [8] in their survey have identified four hand gesture 

categories for different application scenarios: conversational, controlling, 

manipulative and communicative. These gestures can be represented by "temporal 

hand movements" and "static hand postures" as two separate input channels or a 

"mixed channel" of data. Hand postures express certain concepts through hand 

configuration while temporal hand gestures represent certain actions of hand and arm 

movements. An application' s  constraints may further enforce specific requirements 

that may limit the selection of technologies and methods. For instance, hand and face 

tracking for human-computer interaction requires applying fast image processing 

techniques while other applications like hand or body posture recognition have more 

relaxed constraints in terms of required processing power. Availability of the required 
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hardware and robustness against environmental noise are other constraints which may 

be dictated by the application. 

In the literature, the term "vision-based gesture recognition system" refers to systems 

which are able to provide the required functions for recognition of static or 

temporally sequenced patterns of hand, arm, head, body and other body parts from an 

image sequence. In this context, a general purpose vision-based gesture recognition 

system can be decomposed to three distinctive sub-systems: 1 )  detection 2) tracking 

3)  and recognition. The role of the detection sub-system is finding the object of 

interest within the image (i .e. ,  the hand, face, or body). The tracking sub-system 

indicates the movement trajectory of the object of interest within a sequence of 

images and collects the necessary information for the recognition sub-system. The 

recognition system interprets the gesture meaning by finding a known pattern in the 

information collected by the other two sub-systems. In the following sections we 

discuss the relevant research background of these sub-systems. 

2.2 Detection 

Detection takes place when the required features in an image of interest are found. 

The features represent the object of interest and can virtually be any selection of 

information collectible from the image. Edges, curves, shading and color are 

examples of the features which can be considered for this purpose. There are two 

characteristically distinctive feature sets which have been used for hand and face 

detection: invariant features and non-invariant features. The term "invariant" refers to 

robustness against possible modifiers on the imager such as rotation, scale, view 
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point, and change of shape. Ideally, invariant features should be able to identify those 

objects for which geometry changes due to motion relative to the camera. These types 

of objects may have different patterns of 2D image over time making the detection 

process very challenging. For instance, the human face is a three-dimensional object 

and might be observed under a distorted perspective and uneven illumination [ 1 2] .  

This i s  particularly true i n  face detection, where other modifiers such as eyeglasses, 

different skin colors, gender, facial hair, and facial expressions can affect the 

detection within the image as well .  

These modifiers are usually not independent of each other and therefore often exist 

simultaneously. It is also agreed that there is no truly pure invariant feature [ 1 3] .  

Rather, there are features that are more or less robust for one or more modifiers. The 

initial detection of hand, face and body parts within an image is done by locating the 

relevant features .  Therefore selecting the right set of features is the first step toward 

object detection. 

The algorithm which decides whether or not an image contains the object of interest 

is called a classifier. The combination of chosen features and the classification 

algorithm comprises the detection technique. In the context of vision-based gesture 

recognition systems, the detection techniques which have been used and reported in 

the literature are Eigenface matching [ 14] , support vector machines [ 15 ,  1 6] ,  rule­

based techniques [ 17-20] ,  neural networks [2 1 -24] , statistical approaches [25-27] ,  

view-based approaches [28-3 1 ] ,  dynamic programming [32, 33] ,  and genetic 

algorithms [34] . Some of these techniques have been successful for posture 
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recognition and frontal face detection under normal conditions. In the following 

sections, we discuss successful applications of these techniques for gesture 

recognition. 

2.2.1 Shape and contour 

The shape silhouette and the edge formation can reveal useful information about the 

object of interest. Specifically, using shape and contour has been popular for hand 

detection within still images because the hand silhouette can be extracted either by 

employing skin calor or by using a non-cluttered dark background. In this context 

there are two design considerations which should be taken into account: i) how to 

represent the shape, and ii) and how to detect the shape. Considering the fact that an 

object may have a different shape from each view point, object detection based on 

shape normally requires detection of a large number of shapes .  The preferred 

approach for this problem in general requires storing the possible posture shapes in a 

database and searching the database to find the best match for each input posture' s  

shape. 

Gupta and Ma [35] proposed a method for static hand gesture recognition from grey­

scale images. Static hand gestures are represented by their contours by measuring the 

similarity between contour representations. The processing steps to classify a gesture 

included gesture acquisition, segmentation and alignment. They have used the Otsu 

algorithm [36] to autonomously segment the gesture images and a morphological 

filtering approach for removing the background noise. The contour of gestures was 

represented by the LCS (localized contour sequence) and linear and non-linear 
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alignment methods were formulated to determine the similarity between two LCS's .  

For a set of ten ASL (American Sign Language) gestures, their experiment showed 

that no misclassification is made using the methods. 

While linear search of the shape database is computationally expensive, employing a 

proper search method is one of the challenges of using shape databases. Different 

varieties of the search optimization methods can be used in this context. For instance, 

Lockton and Fitzgibbon' s  work [37] is based on a method for single hand gesture 

recognition using template matching with boosting. This technique makes the search 

hierarchical based on features and therefore much faster than the linear search. Their 

system interprets 46 gesture elements including 36 letters and digits of the American 

Sign Language finger-spelling alphabet. The main assumption of this method is that 

the hand' s silhouette is detectable within the image and the classifier matches the 

hand silhouette to the gesture database. They have reported a 99.87% success rate 

using 3000 gesture images. 

Stenger, Thayananthan, Torr and Cipolla [38, 39] proposed a method for hierarchical 

object recognition. In their approach, a cascade of classifiers is arranged in the form 

of a tree in order to recognize multiple object classes. Specifically, for hand pose 

detection, the required database for the classifier can be obtained from synthesized or 

real images for training. They have compared a variety of template matching 

techniques and concluded that oriented edge marginalized template using pixel-wise 

averaging and negative weights result in better performance. They also concluded that 

a classifier trained with real data provides better results than synthesized data. We 
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have to highlight that the computational cost of curve matching could be higher than 

silhouette matching and for real-time applications the matching speed is another 

constraint which should be considered as well .  In this context it is worth mentioning 

Dias et al . ' s  [ 40] vision-based open gesture recognition engine called ORGE. They 

have reported that their platform is capable of detecting hand contours using template 

matching with an accuracy of 80% to 90%. 

Shamaei and Sutherland' s work [4 1 ]  is one of the most interesting approaches in this 

context. They have proposed a multi-scale approach based on Principal Component 

Analysis (PCA) and graph matching for video sequences. PCA is a technique which 

allows the points of a high dimensional space to be represented in a low dimensional 

space. Each frame of the image sequence can be represented as a single point in a 

multi-dimensional space. For instance, each image of size 24x24 pixels represents 

one point in the image space with 576 dimensions . Therefore, a gesture as a sequence 

of images represents a sequence of points in the multi-dimensional image space. The 

PCA technique enables the visualization of the gesture sequence in a 2D or 3D space. 

Their approach for template matching and searching the gesture database was based 

on locating matches within a hierarchy of images instead of a linear search. They 

divided up the dataset into groups of images which are similar to each other by 

blurring the images at different levels such that there is a small difference between 

similar images. Thus, the whole group of original images may be reduced to just one 

image which represents the entire group. This approach is interesting because it 

simplifies the gesture recognition to a curve fitting problem in a high-dimensional 
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space. However, the computational cost of the point matching and curve fitting is  

high. Moreover, there is a debate on whether this search technique is suitable for large 

number of shapes or not. Blurring causes the edge information to be smoothed and 

consequently one of the important features to be ignored in the first step. 

A similar approach was also used by Bretzner et al. [ 42] for a specific application. 

They proposed an algorithm for hand posture recognition. Hand postures are 

represented in terms of hierarchies of multi-scale color image features in different 

scales, position and orientation. In each image, detection of multi-scale color features 

is performed and hand states are simultaneously detected and tracked using particle 

filtering for estimating the probability of the likelihood of an image to a set of model 

hypotheses. Their main aim was detection of five finger counting hand postures as a 

source of commands to an external device. Image features together with information 

about their relative orientation, position and scale define a view-based object model . 

Hand was represented by (i) a model of the palm, as a coarse blob, (ii) five fingers as 

ridges at finger scales and (iii) finger tips as even finger scale blobs. The different 

states of the hand model were defined based on the number of open fingers. Their 

experiments showed that the hierarchical layered sampling approach improves the 

computational efficiency of the tracker by a factor of two, compared to the standard 

sampling method in particle filtering. 

In addition to searching the shape database, it is also possible to train a classifier for 

shape detection. In comparison to using the shape database alone, this method i s  less 

flexible when new shapes are introduced. However, for a limited number of shapes 
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this approach may be preferable due to the availability of tools and its simplicity . The 

work of Ardizzone, Chella and Pirrone [43] is one of the examples in using this 

approach. They have applied a Support Vector Machine (SVM) for body posture 

recognition from the silhouette of the body. They have used about 100 manually 

segmented binary images of seven different poses as training data. Based on the 

training data and the SVM classification approach, 7 different support vectors were 

found. They have reported that the classifier has successfully been applied for giving 

manual commands to a robot but they have not reported the precise accuracy of their 

system. 

2.2.2 Skin color as a supportive cue 

Approaches based on static shape detection are not suitable for general hand tracking, 

due to the deformable model of the human hand. The hand is a highly articulated 

object and its view-based appearance can change significantly .  The alternative 

approach is using a colored glove or skin col or as an invariant feature [ 44-50] . Skin 

color as a feature has been successfully used in many vision-based gesture 

recognition systems. There are also a limited number of implementations using infra­

red imaging or background elimination techniques, which despite being different, can 

provide similar data localization. A detailed discussion on skin color detection and 

related algorithms is beyond the scope of this research, and can be found in Brand and 

Mason [5 1 ] ,  Jones and Rehg [47] ,  and Dadgostar and Sarrafzadeh [52] . In this 

section, we describe research in which skin color was used as an extra cue for hand 

and face detection. 
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It i s  possible to use skin color together with another detection technique to reach a 

higher level of accuracy. This approach can be applied for face localization in face 

detection algorithms. For instance, Ruiz-del-Solar, Shats and Verschae [53] proposed 

a mixed approach for face tracking in video sequences. They have used rg (red-green) 

color space for skin color segmentation to reduce the search space for the Viola-Jones 

face detection algorithm. Brethes et al . [54] proposed a method for skin color 

segmentation based on watershed on the skin-like color pixels .  They used 

chrominance and luminance sequentially for skin color segmentation. By using this 

technique, candidate face areas are limited in the image. Then, using the discrete 

Adaboost algorithm [55], the face area is detected. They have concluded that using 

color as an extra cue significantly improves the hand and face tracking. These are not 

the only works in this context, and this approach was also applied by other 

researchers. 

The descriptive characteristics of the object also can be used to make narrow the data 

localization. Although employing this approach is probably not feasible for objects 

l ike the hand, it  can be used for face detection. Wong et al . [56] propose a hybrid 

approach for face detection in color images. The main idea is detecting a candidate 

region as face based on skin color distribution and applying extra checking for 

reducing false recognitions. The main steps are as follows: 

1 )  Filter the image by a skin detector and consider the biggest blob as face 

2) Select the candidate points for eyes using valley detection 
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3) Test all of the combinations of the candidate eye pixels for validity of the 

recognition. 

The third step is based on the fact that face is a symmetrical object. Then the axis 

between the eyes based on the approximate position of the eyes on the face represents 

two mirror images of the same shape. For dealing with the asymmetrical lighting 

conditions, they used histogram equalization for each side of the axis. If two of the 

candidate pixels for the eye satisfy the symmetry constraint, they are considered as 

eyes. To reduce the false detection ratio, the recognized face is compared to an 

average image of the samples using an Eigenmask of the face. The main reason for 

eye detection prior to using an Eigenmask image is to find an approximate rotation of 

the face and to match the rotated face with the Eigenmask. They have reported a 

93 .39% detection rate in this application. 

2.2.3 Accuracy enhancement - Boosting 

Boosting is a general method that can be used for improving the accuracy of a given 

learning algorithm [57 ] .  More specifically, it is based on the principle that a highly 

accurate or "strong" classifier can be produced through the linear combination of 

many less accurate or "weak" classifiers each of which may be slightly better than a 

random generator classifier. The Viola and Jones [58, 59] object detection method is  

based on boosting and statistical analysis of the basic image block differences called 

Haar4-like features .  The detector of each Haar-like feature acts as a weak classifier 

4 The Haar wavelet proposed in 1909 by Alfred Haar is the first known wavelet [www. wikipedia.org]. 
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and the final classifier is built on a cluster of these weak classifiers. Viola and Jones 

in particular have used this technique successfully in frontal face detection [37, 55,  

60-65] .  

It should be highlighted that this method requires careful selection of the Haar-like 

features .  By choosing the right set of Haar-l ike features this method may also be 

suitable for other applications. The Viola-Jones method was also applied for detection 

by other researchers. In this context, Braczak, Dadgostar and Johnson [66] have 

applied the Viola-Jones algorithm for detecting fixed hand palm postures. For general 

hand posture detection applications, they have identified some challenges which 

should be addressed. First, the hand is an articulated and non-rigid object that makes 

its shape to be variable over time. Hence, a hand detector based on the Viola-Jones 

method should be capable of detecting a large number of possible hand shapes 

requiring a large number of classifiers. This requires a huge database of different 

hand posture images for training the classifiers. Secondly, applying a large number of 

classifiers makes the final classifier which is a CPU bound process very slow. 

Specifically, they have indicated that using more than 8 individual classifiers which 

are being evaluated sequentially can not be done in real-time on a personal computer 

(a Pentium 4 - 2 GHz processor) . They have also studied the rotated Haar-like feature 

for tracking hand palm using the Viola-Jones algorithm. Their results show that the 

robustness of tracking dramatically decreases when rotation is more than 45°. This 

results shows that rotated features may not give the same results as non-rotated 

features. 
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One of the explanations for this phenomenon is the method of implementing the 

Viola-Jones algorithm. To make the tracking method capable of detecting the object 

of interest in different distances from the camera, the normal approach is using low 

resolution image samples. The chosen Haar-like features will be distorted due to the 

discrete space limitations. The low resolution training makes this distortion higher 

and the final result would be less robust against rotation. In Figure 2. 1 ,  although the 

same examples were used, the selected features were not equivalent for rotated 

examples. 

Figure 2.1. a) The first set of features for: a) oo rotation, b) -15° rotation, and c) -84° 
rotation. 

The performance of the Viola-Jones algorithm usmg multiple classifiers can be 

improved using a classifier tree to speed up the search within the classifiers. Ong and 

Bowden [67] proposed a boosted classifier for hand shape detection based on a tree 

structure of boosted cascades of weak classifiers. The root of the tree forms the 

general hand detector. Successfully detected frames by the root are then passed to the 

branches of the tree where there are specific cascades designed only to detect a 

specific hand shape. They have used the shape context [68] and the k-mediod for 

automatic grouping of hand shapes. The k-medoid clustering algorithm is similar to 

the k-means clustering algorithm. It associates each cluster with a set of images that 
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most closely resemble the cluster centre. The distance metric between the cluster 

centre and the image is given by the shape context cost, and each cluster is defined by 

one branch in the second layer of the classifier tree. They reported 97.4% and 99.8% 

accuracy on the same video sequence of the same person ' s  hand postures they used 

for training. 

2.2.4 Appearance, model and texture 

In addition to the shape information other features such as geometrical and kinematic 

constraints can be employed for hand and body posture detection. For instance, the 

hand' s  articulation does not allow the fingers to rotate in any arbitrary direction (at 

least in a normal hand). Therefore, having the kinematic model, possible states of the 

hand can be estimated for a certain shape. The geometrical constraint can also be 

employed for this purpose. For example, the distance between hand blob and face 

blob could at most be equal to the length of the arm. Hence, this can be employed to 

limit the search for hand blob within an image after detecting the face or vice versa. 

Based on this idea, Urano, Matsui, Nakata and Mizogouchi [69] suggested a body 

posture recognition system based on outline diameter and higher order local auto 

correction features of the shape. As the first step, their system uses depth thresholding 

for detecting the person in the scene. In the next step, it uses the pre-recorded 

background information to eliminate some of the unwanted areas not eliminated in 

the first step. Finally, in the third step, the diameters and high-order local correlation 

features are used for template matching. They have tested their system using 6 

different body postures and reported 76.8% to 100% accuracy in detecting different 
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body postures. The role of background elimination using a pre-recorded background 

is not clear in this research .  Assuming that this is a necessary step in the pre­

processing, employing this technique could be impractical due to two facts. Firstly, 

recording the initial background should be performed before the detection phase 

which requires the intervention of user or another mechanism. Secondly, the 

environmental changes, such as change of lighting, make the initial pre-recorded 

background obsolete. Re-recording the background requires that the user leaves the 

scene for a moment. According to our observation this process could be very 

annoying with cameras equipped with an auto shutter mechanism. When user leaves 

the scene, the camera adjusts its shutter to adapt to the new lighting condition. And 

very often the background' s  intensity would be different in the presence of the user in 

the scene. 

Rosales et al . [70] have addressed the problem of recovering a 3D hand pose from a 

monocular color sequence.  They have proposed a system that tracks the hand and 

estimates its 3D configuration on every frame. Their approach is based on a 

probabilistic modeling method called specialized mapping architecture (SMA) which 

is used for mapping image features to likely 3D hand poses. SMA is related to 

machine learning models that use the principle of divide-and-conquer to reduce the 

complexity of the learning problem by splitting it into several similar ones. In 

general, these algorithms try to fit surfaces to the observed data by (i) splitting the 

input space into several regions, and (ii) approximating simpler functions to fit the 

input-output relationship inside these regions. For more accurate locating and 
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segmenting of the hands, they have used the similarity of the color of face and hands. 

They have used a dataset of 8000 synthetically generated hand images for training a 

feed-forward neural network with 5 hidden layers. The main advantage of this 

algorithms is its linear growth rate of O(M) (M is the number of specialized 

functions) . Employing the divide-and-conquer for shape matching is an interesting 

technique for this purpose. However, its implementation will have some side effects 

on the ability of shape detection. Specifically, in their implementation, the detector 

would be sensitive to rotation. Hence, the detector may fail in a rotated hand posture. 

Poppe et al . [7 1 ]  described a vision-based approach for body pose estimation in video 

sequences in the context of a meeting environment. In the first step, the silhouette of 

the body is extracted using a frame subtraction technique. In the next step, using skin 

color segmentation based on the HS (Hue-Saturation) color space, the face and hands 

of the speaker are separated from the silhouette of the body. Finally, using inverse 

kinematics and silhouette matching, the locations of elbows and knees are calculated. 

Employing the kinematic model and other cues together, however, raises a new level 

of complexity and computational cost, although it may provide a more robust 

framework for hand and body posture detection. In this context, Loutas et al . [72] 

proposed a mutual information approach for articulated object tracking based on a 

similarity measure. The measure is calculated on the tracked object image or 

alternatively on the tracked object texture map accompanied by a confidence map. 

The use of the object texture map was found to improve the tracker' s performance. 

Articulated constraints are included using a kinematic model on the tracker search 
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range and initial conditions based on the anatomy and the kinematic capabilities of 

each joint. 

Lu et al [73] proposed a model-based integration of visual cues for hand tracking. 

They have used multiple sources of information which come from edges, optical flow 

and shading. A hand in their model consists of a base link (palm), and five chains 

(fingers) connected to the base link through five two-degree-of-freedom revolute 

joints. Finger parts are modeled as cylinders and the palm is modeled as a six­

rectangle-side-solid. 

In summary, the applications of model-based hand posture detection are still limited 

mostly due to the computational cost of employing the inverse kinematic model . In 

addition, it requires studying the kinematic model of the object in advance which is 

itself a time consuming task. However, considering the fact that the kinematic model 

of the hand and body is almost the same for all people, it can be used as a framework 

for other research. It is  expected that this technique will be employed more frequently 

with availability of more powerful hardware in the future. 

2 . 3  Vision-based object tracking 

Tracking is another essential part of a vision-based gesture recognition system. 

Several different approaches are commonly used for tracking. In some of these 

methods, the detection of the hand and face are done on each frame of the image 

sequence. This reduces the tracking problem to a frame-based detection problem. 

Some others use tracking over the image sequence by initializing a set of features, 
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and tracking and evolving them in the next input frame. The Mean-shift algorithm, in 

particular, is being used for this purpose and is introduced in the following sections. 

2.3.1 The Kalman filter 

In gesture recognition systems there are situations where hands or face cover each 

other. In these scenarios, based on the available information in a single frame, an 

accurate indication of the position of hand and face is  impossible. In such cases, prior 

knowledge of the direction and the speed of the object of interest can be used to 

predict its position over time. Considering the fact that our prior measurements of the 

position of the object of interest may also not be accurate, special considerations for 

predicting the next position are required. 

The popular approach to this problem is using the Kalman5 filter. The Kalman filter is 

an efficient recursive filter which estimates the state of a dynamic system from a 

series of incomplete and noisy measurements. The Kalman filter has two distinctive 

phases: predict and update. The predict phase uses the estimate of the previous time-

step to produce an "estimate" for the current state. In the update phase, measured 

information from the current time-step is used to refine the prediction to calculate a 

more accurate estimation. Detailed information about the Kalman filter can be found 

in Welch and Bishop [74] . 

5 In 1 960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering 
problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of 
extensive research and application, particularly in the area of autonomous or assisted navigation [www.wikipedia.org]. 
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In one of the earliest works employing Kalman filters for tracking hands, Imagawa 

and Igi [75] have used the Kalman filter for hand tracking in a vision-based sign 

language interpretation system. To overcome the problem of hand/face occlusion, 

they have assumed that the face is not moving and therefore the non-moving region 

including face can be disregarded in case of hand and face overlap. They have 

reported an average accuracy of 90% for hand tracking in five video sequences of one 

person' s  gesticulations. 

In another study, KaeTraKulPong and Bowden [76] presented a method for tracking 

low-resolution moving objects in the image. In their system, Kalman filters were 

applied to track multiple objects based on measurement of their position, motion, 

simple shape features and calor contents. The coordinates of the object centroid and 

the minimum bounding box of the object were modeled by a discrete-time kinematic 

model.  The centroid was modeled by a white noise acceleration model while the 

height and width of the bounding box were modeled by a white noise velocity model. 

They assumed that the object moves with a constant velocity and the bounding box 

does not change extensively. Of course this assumption is not valid for hand tracking. 

The hand's  movement speed is normally variable over time. 

The variable speed of the hand is one of the challenges of employing the Kalman 

filter for hand tracking. The accuracy of the prediction in the Kalman filter is 

dependent on the accuracy of the information in the past state. In theory, smaller time 

distances in taking new samples from the system makes the prediction more accurate. 

However, in a vision-based hand tracking system, the minimum time distance is 

25 



Chapter 2. Literature review 

l imited to the maximum frame-rate of the image grabber which is normally about 30 

frames per second. This sampling rate may not be sufficient to estimate some hand 

maneuvers. In some hand gestures, change of direction may occur in a hundredth of 

second which cannot be sensed using a normal image grabbing device.  To overcome 

to this problem, either using an enhancement to the tracking algorithm or using a 

faster image grabbing device is required6• Despite this limitation, the Kalman filter is 

still attractive for researchers particularly due to its theoretical foundation and more 

importantly in this context its capability to limit the overlapping occlusion which is 

the main concern in some applications. 

Another interesting application of hand gesture was proposed by Oka, Sato and Kioke 

[77, 78] . They proposed a method for tracking user's hand and multiple fingertip 

trajectories for augmented desktop interface systems. Initially, using a fixed size 

search window (approximately equal to the size of the hand in the image), the hand is  

searched for in the input of an infrared camera. Once a search window has been 

determined for a hand region, the fingertips are searched within that window. The 

overall shape of a human finger is approximated by a cylinder with hemispherical 

cap. The location of the fingertips in each frame is predicted based on the location 

detected in the previous image frame using a Kalman filter. They have suggested that 

the system noise and observation noise are constant Gaussians noise with zero mean. 

The system noise model and observation noise model in a Kalman filter are 

6 At present time, fast image grabbers are mostly being used for industrial applications, and are still too expensive for home 
users. 
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dependent on the application and should be estimated by the system designers. 

Therefore, the assertion of constant Gaussian noise model may not be accurate for 

any arbitrary system. They have reported 99.2% and 97.5% accuracy for single-finger 

and double-finger tracking in drawing three shapes (circle, triangle and square) with 

gesture movements using HMM (Hidden Markov Model) .  

The implementation of  the Kalman filter for gesture recognition is also publicly 

available .  The Computational Biomedicine Imaging and Modeling Centre at Rutgers 

University provided a foundation for tracking human body parts. Their system 

provides facilities for color analysis, Eigenspace-based shape segmentation and 

Kalman filters with the ability to track the position, size and angle of different body 

parts [6] . 

2.3.2 Tracking using multiple cues 

Contextual knowledge can be employed to overcome ambiguities and uncertainties in 

measurements . Belief networks are an effective method for combining user-supplied 

semantics with conflicting and noisy observations to deduce an overall consistent 

interpretation of the scene. A Bayesian Belief Network (BBN) is a directed acyclic 

graph that explicitly defines the statistical (or "casual") dependencies amongst all 

variables. 

Wang et al . [79] proposed a visual tracking approach based on multiple cues of the 

image sequence. They used a dynamic Bayesian network for estimating the face area 

by multiple cues which are (i) frontal face detection using the Viola-Jones algorithm, 

(ii) the skin color based on Hue thresholding and (iii) the fact that the head can be 
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mode led by an ellipse with aspect ratio of 1 :  1 .2 .  They have shown that this approach 

works better in case of having a cluttered background or occluded face. The tracking 

procedure is based on matching the 3D hand model to a segmented 2D hand image. 

The matching is based on joint constraints and multi-cue data collected from optical­

flow, edges and shadings of the image sequence.  Although adding different sources of 

information increases the accuracy of the tracking algorithm, it also increases the 

processing time and is therefore less likely to be used as a real-time solution. The 

experiments in their paper were done on grey-scale image sequences with dark 

backgrounds. That makes the background elimination less time consuming in 

comparison to real-word applications in which hand segmentation is sometimes not as 

easy. 

Wem, Clarkson and Pentland from the MIT Media Lab [80] have done an interesting 

study on hand and body movements. Considering the fact that the human body is a 

complex dynamic system and that its visual features are time varying noisy signals, 

they suggested applying a recursive estimation framework (e .g Kalman filter) for 

accurately tracking movement. They suggest that because human movements are 

constrained by physics laws they are somewhat limited. The personality of the person 

also makes the gesture movements even more limited. In their study, they have shown 

that adding another limiting factor which depends on the behavior of the person 

makes the estimation more accurate. Their key idea is applying "Physics + Behavior" 

as an additional control signal for predicting hand movements which makes Kalman 

prediction more accurate in comparison to using the "Physics Only" model.  
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Therefore, there is a debate in their study on whether or not the accuracy comes from 

a more complete model of hand movement or their theory which lies in behavioral 

science. 

2.4 Gesture recognition 

Gestures are usually represented by a number of features including templates, global 

transformation, zones and geometric features .  Several methods have been used for 

gesture recognition: template matching, dictionary lookup, statistical matching, 

linguistic matching, neural-networks, Hidden-Markov models, and ad hoc methods 

[ 1 ]  0 

Gesture recognition from either a sequence of hand postures or movement trajectory 

of hand requires analysis of information over time. From this point of view, the HMM 

is one of the most common approaches to gesture recognition. 

2.4.1 Hidden Markov Model 

HMM is used widely in speech recognition and recently many researchers are 

applying HMM to temporal gesture recognition. HMMs are probabilistic models used 

to represent non-deterministic processes in partially observable domains . They are 

defined over a set of states, transitions and observations. HMM gets its name from 

two defining properties. Firstly, it assumes that the observation at time t is  generated 

by some process the state S1 of which is hidden from the observer. Secondly, it 
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assumes that the process state 51 is always independent of all the states prior to t-17 • 

This attribute is called the first order Markov property . In other words, the current 

state at the same time describes what we need to know about the history of the 

process, to predict its future state. The first order HMM, i s  a kind of a discrete model 

of the Kalman filter. 

In an HMM, the state is not directly visible but variables influenced by the state are 

visible. Each state has a probability distribution over the possible output tokens. 

Therefore the sequence of tokens generated by an HMM gives some information 

about the sequence of states .  The challenge in employing HMM is to determine the 

hidden parameters from the observable parameters. The extracted model parameters 

can then be used to perform further analysis (e .g.  for pattern recognition 

applications). 

In summary, the Markov properties mean that the joint distribution of a sequence of 

states and observations can be factored in the following way [8 1 ] :  

1' 
P(SI T > �1' ) = P(SI )P(YI I SI ) TI P(S, I SI-I )P(Y, I s, )  (2.1) 

1=2 

To define a probability distribution over sequences of observations, the final step is  

specifying the probability distribution over the initial state P(S1), the KxK state 

transition matrix defining P(S1IS1•1) and the output model defining P(Yr iSr). Modeling 

7 This is a first-order Markov property. 
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a system with HMM and indicating the initial and transition probabilities are 

challenging tasks in this context. 

Schlenzin, Hunter and Jain [82] divided the gesture recognition process into two 

stages: identification of the hand pose within the current image frame and 

incorporation of the new information into the probability estimation. Their approach 

was particularly focused on improving the second stage using recursive estimation 

and HMM. They have modeled a gesture as an unobserved random sequence whose 

behavior can be summarized with a state transition matrix consisting of the 

probabilities of each state occurring given only the previOus state. The pose 

information is the observation sequence whose output depends on the current gesture. 

The recursion can be expressed mathematically as : 

(2.2) 

where, Xn is the estimate of the state of the system at time n, Vn is the new information, 

and Yn is the weighting factor. At each time step new information is obtained from the 

current frame, and is used to modify the estimate of what gesture is occurring. 

There are also some software platforms or open source libraries to facilitate 

developing a gesture-enabled application. The most comprehensive platform is the 

Georgia Tech Gesture Toolkit (GT2k) which is based on Cambridge University ' s  

speech recognition toolkit, adapted for gesture recognition [83] .  GT2k assumes data i s  

being provided by a Data Generator, such as camera, digital glove or accelerometer, 

in the form of a feature vector. The resulting GT2k classification is then handled by a 

Results Interpreter as appropriate for the application. Westeyn et al . [83] studied four 
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applications of GT2k in gesture recognition. The first application was "The Gesture 

Panel" for gesture recognition in automobiles. A low resolution infra-red camera 

records the silhouette of the driver' s  hand gesticulated to find a radio station. They 

used a grammar of 8 hand postures and reported that the accuracy of the system was 

249 out of 25 1 samples (99.2%). 

The second application of GT2k was "Patterned Blink Recognition". A prototype 

system was used to investigate if the intrinsic properties of a person ' s  blink pattern 

were a personal identification characteristic . They have reported that this system 

correctly classified 43 of the 48 examples (89 .6%) for three participants. 

The third application was a "Mobile Sign Language Recognition", limited to 40 

words vocabulary and a controlled environment. For this system, they have reported 

52.38% accuracy of detection for a vision-based input data, 65 .87% accuracy for 

accelerometer input data and 90.48% accuracy for combined input data. 

The fourth application was "Workshop Activity Recognition" system, to monitor the 

typical actions of a user to determine the user's  context. They have reported that this 

system is able to classify 10 individual gestures with accuracy of 93 .33%.  

According to GT2k ' s  experiments, it is  being concluded that: i) combined features can 

improve the accuracy of the classifier, particularly for gesture recognition systems, 

and ii) the topology of the HMM is dependent to the gesture alphabet which requires 

modification of the topology in case of modifying the alphabet. The second issue is  

one of the disadvantages of using HMMs in gesture recognition. Finding an 

alternative approach is  still a topic of on-going research. 
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2.4.2 Temporal gesture recognition 

A hand gesture can also be represented as the movement trajectory of hand. Based on 

this representation, the spatial or temporal appearance of a gesture can be represented 

as a set of carrying features (e .g. hand postures). In the following paragraphs we 

discuss some of the research in this context. 

Zho, Ren, Xu and Lin [84] described the characteristics of a real-time gesture­

controlled system. Movement analysis is based on an intensity image sequence and a 

hand mask image sequence where each mask covers the moving hand region within 

the corresponding intensity image. A spatio-temporal appearance is extracted by 

integrating fine image motion estimation and shape analysis. The extracted spatia­

temporal appearance is a temporal trajectory of feature vectors. The feature vector 

includes horizontal translation, vertical translation, isotropic expansion, deformation, 

2D rotation, as well as yaw and pitch extracted from the motion gradient of the shape 

movement. The average accuracy of the system was reported as 89% for twelve hand 

gestures. 

Su et al . [ 1 9, 20] proposed a fuzzy rule-based approach for spatia-temporal hand 

gesture recognition for sign language detection. Their approach was based on 

employing hyper-rectangular composite neural-networks (HRCNN) for selecting 

hand-shape templates and extracting weights of the HRCNN to form IF-THEN rules 

for a rule-based system. The accuracy of their system is 9 1 .2% on their test dataset 

with a size of 90 containing 34 basic hand shapes. 
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2.5 Applications of vision-based gesture recognition 

systems 

There is a wide range of applications in which vision-based gesture recognition 

systems can be employed. While some applications like sign language interpretation 

require full capability of vision-based gesture recognition including detection, 

tracking and recognition for both hands and even in occluded situations, some other 

applications like computer games can provide more relax constraints. Employing 

hand gestures as a source of commands to computer or robot is another interesting 

application which has recently attracted some of the research in human-computer 

interaction. In the following sections, we introduce the research which focuses 

particularly on the application side of vision-based gesture interaction. 

2.5.1  Gesture enabled applications 

Wu, Shah and Lobo [85] have proposed a method for tracking 3D position of hand 

using a single camera. Their system can infer the 3D location of the finger, letting 

users describe a geometrical object in 3D through their gestures. They used a pre-

calculated histogram-like structure called a Color Predicate (CP) to detect the skin 

color. Their main assumption was that after skin segmentation and removing disperse 

noise pixels only both hands and face are left on the image. The next assumption was 

that the arm gesticulations are around the articulation joints (e.g. elbow). Therefore, 

the part which is farther to the joint has the fastest centroid. For instance, the fastest 

centroid in a gesture in drawing a circle in space belongs to hand. For finding the 

pointing finger they have used the approximation of k-curvature which is defined by 
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the angle between two sequential vectors of the edge information. As they have 

indicated, this approach works well while the pointing finger is visible in the 

segmented image but in occluded situations, estimation based on the previous 

position is required. For determining the position of the elbow and the shoulder their 

estimation is based on the assumption of having a frontal view of the user which is 

unlikely to be satisfiable in a real-world application. On the other hand, determining 

the position of the hand in 3D space is based on knowledge of the length of the arm 

segment in the image which depends on the subject, which in their experiment, is 

wearing a shirt with short sleeves. 

Licas and Szirany [86] implemented a virtual mouse system in a projector camera 

configuration. The configuration of the system is based on a digital camera which 

grabs the output of a video projector with a known image. Matching the grabbed 

image to the original image requires two transformations. The first transform 

produces an image geometrically matching to the original input. The second 

transform then matches the colors of these two images to indicate the difference of 

the images. The image difference represents the area which is possibly the silhouette 

of the hand or body of the speaker standing in front of the screen. The detected 

silhouette is matched to the feature vectors of known hand gestures which is based on 

Maximum likelihood recognition. They have reported 97.9% to 1 00% accuracy for 

detecting 9 gestures, gesticulated by 4 users. 

Lementec and Bajcsy [87] proposed a gesture recognition algorithm from Euler 

angles acquired using multiple orientation sensors. This algorithm is a part of a 
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system for controlling Unmanned Aerial Vehicles (UAVs) in the presence of manned 

aircrafts on gesture recognition. Their method is based on gesture template matching. 

Each gesture template is specified by a set of rules indicating the angle of the sensors 

attached to both arms. They have reported that the system is able to detect 1 1  bi­

manual arm gestures. 

The motion information can also be used for some specific applications. Bradski [88] 

has applied a motion gradient of the image sequence to control a virtual orchestra. 

This method is based on time motion history image (tMHI) for representing motion 

from the gradients in successively layered silhouettes. This representation is used to 

segment and measure motion in a video sequence which is connected to parts of the 

moving object. They demonstrated the approach for recognition of waving and 

overhead clapping motions to control a music synthesis program. 

2.5.2 Perceptual user interfaces 

There is little doubt that vision-based human computer interaction including gesture 

recognition will have a significant role in the new generation of user interfaces called 

perceptual user interfaces (PUI) . In addition to the recent advances in developing the 

gesture-based PUis, studying the scope of applications is an interesting research 

which may reveal some other potential applications for gesture-based human­

computer interaction. 

A camera-based mouse system was developed by Betke, Gips and Fleming [89] to 

provide computer access for people with severe disabilities. Using a camera, the 

system, tracks the computer user' s movements and translates them into the 
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movements of the mouse pointer. The visual tracking algorithm is based on cropping 

an online template of the tracked feature from the current image frame and testing 

where this  template correlates with respect to the subsequent frame. The location of 

the highest correlation is interpreted as the new location of the feature in the 

subsequent frame. They have reported that this system is able to track many body 

features and it is therefore easily adaptable to serve the special needs of people with 

various disabilities. 

Feature tracking in this research seems not to be robust for general applications. As 

the results of their experiments show, increasing the width of the search window 

decreases the accuracy of feature tracking at some stage. This occurs because the 

selected features, which are rather simple, are too simple to identify the object of 

interest within the image. Choosing more complex features may be possible, although 

it may add some more constraints (e .g. always having a frontal view of the face), 

which may make it inappropriate for some potential disability support applications. 

Wilson and Cutrell [90] introduced FlowMouse, a computer vision-based pointing 

device that is based on hand gesture. FlowMouse uses optical flow techniques for 

modeling the motion of the hand and a capacitive touch sensor to enable and disable 

interaction. However, the quality of the optical flow field derived from hand motion 

is not as good as traditional input devices such as a mouse or a Trackpad. They have, 

however, presented some scenarios in which the ability to control the environment is 

acceptable using this technique. Therefore, this approach can potentially provide 

opportunities for user interface innovations. 
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Wilson and Oliver [9 1 ]  introduced a fast stereo-vision algorithm for recognizing hand 

position and gestures. The depth information is extracted using a stereo-vision system 

mounted on top of the monitor pointing to the surface of the desk. This system is able 

to calculate the position of the object relative to the surface of the monitor and 

therefore provides better location of the hand or pointing gestures for controlling the 

objects on the screen. They have incorporated this technique into a prototype called 

GWindows to demonstrate the use of perceptual user interfaces in everyday GUI 

tasks. 

2.6 Chapter summary 

In this chapter we introduced the state of the art of research in vision-based gesture 

recognition and critically reviewed the literature in this  area. As stated in the chapter, 

there are three distinctive sub-systems that a general purpose vision-based gesture 

recognition system should have. The role of the first sub-system is detecting the 

object of interest which is typically hand, face or body in this context. The main 

detection techniques are: shape and contour matching, using a classifier such as NN 

or SVM, boosting, skin calor segmentation and employing the kinematic model of 

hand or body to estimate its 2D appearance. The role of the second sub-system is 

tracking the object of interest. Although, the tracking can also be translated to 

detection in each frame of the image sequence, it is  also possible to use the 

information collected from the previous frame to make tracking more accurate and 

less computationally intensive. The Mean-Shift algorithm and the Kalman filter are 

the core approaches which have been successfully used for tracking in vision-based 
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gesture recognition systems. The role of the third sub-system is interpreting the 

collected information from the previous sub-systems in a form usable in the 

application at hand. HMM, and Spatial and Temporal analysis of gesture are the main 

approaches which have been used in this context. 

Finally, we referred to some of the applications of the vision-based gesture 

recognition systems and their increasing role in the human-computer interaction, such 

as perceptual user interfaces, which are becoming an active research in human­

computer interaction. 
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in daily communications : An 

empirical study 

3 . 1  Introduction 

Human computer interaction is one of the major applications of vision-based gesture 

recognition systems. Hence, designing its components requires having adequate 

background knowledge about the typical data which should be processed by the 

system. Designing a general purpose gesture recognition system would require 

studying typical gestures being used in every context. Such investigations can include 

comprehensive studies in behavioral science and psychology which is beyond the 

scope of this research. For the purpose of this research, however, we limited this part 

of the work to studying the foundations of gesture interpretation which could be 

useful in determining the more suitable features to extract. In this context, an 

experiment was designed and carried out on the gesticulation of primary school 

students while explaining their solution for a counting math problem. 

For this study, we analyzed a corpus of over 3000 video clips of mathematics tutoring 

sessions. This collection was recorded in a primary school in Auckland, New 

Zealand, and the participants were children aged 5- 12. The study revealed how these 
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young students employ different gestures in their communication in a mathematical 

problem-solving context. 

The result of the research presented in this chapter is evidence to the usability of a 

gesture recognition system in the context of one-to-one tutoring in mathematics. The 

results also identify the required information which is needs to be collected in an 

automatic gesture recognition system for intelligent tutoring system applications. 

3 .2 Research background 

In the literature, several definitions and categorizations have been proposed for the 

term gesture. Oxford dictionary defines a gesture as "a movement of part of the body, 

especially a hand or the head, to express an idea or meaning", implying that gestures 

may be used for conveying some meaning in communication activities for the 

purpose of adding extra information of the intention. To relate the use of gestures to 

Human-Computer Interaction (HCI), Cadoz [92] employs the term "gesture channel", 

associating it with three functions in communication: ergotic, epistemic, and semiotic. 

Firstly, the ergotic gesture is associated with the notion of work. It allows a direct 

manipulation with matters, such as typing on a keyboard, moving a mouse and 

clicking buttons. Secondly ,  the epistemic gesture g1ves information relating to 

temperature, pressure, the surface quality of an object, its hardness, form, orientation, 

and weight. This allows humans to learn from the environment through tactile 

experience.  The epistemic role of gesture has emerged effectively from pen-based 

computing and virtual reality. For instance, environmental information can be 

virtually recognizable by some epistemic gestures in virtual reality environments. 
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Whilst many gesture-based multimodal interfaces, e.g. ,  Ymir [93] have been designed 

to deliver epistemic functions of gestures, recently much attention has been paid to 

semiotic functions, which produce an informational message for the environment. 

This function gathers the gestures which accompany language, like sign language and 

symbolic gestures. For instance, a "goodbye" gesture recognized using a smart data 

glove illustrates how the semiotic functions of gesture can be used in the HCI 

domain. 

Brereton et al . [94] have done research to explore how gestures are used in the 

context of everyday work. Their goal was to find the gestura! themes that might 

inspire design solutions. They have concluded that some of the gestura! themes have 

overlaps. Their observations also led to the idea that mirroring gestures which are 

widely used in every day human-to-human conversation have important implications 

for devices that support communication between people. Therefore, there is potential 

for couples or groups using gestura! devices to easily develop a set of gestures that 

they agree upon, which could be learned by gestura! input devices. However, this 

conclusion may be biased by cultural knowledge and some "primal mechanisms that 

appear to have evolved for the vital management of gestura/ information " as they 

have stated. This suggestion is not commonly used in developing gesture-based UI 

and approaches employed are mostly application-based as discussed in the following 

sections. Relevant to the functional understanding of gestures in communicative 

activities, McNeill [95] and Cassell [96] categorized gestures into three types: deictic, 
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iconic, and metaphoric. These three types of gestures have different roles in 

communication. 

Deictic gestures also called pointing gestures, highlight objects, events and 

locations in the environment. They have no particular meaning on their own 

but frequently convey information solely by connecting a communicator to a 

context. Deictic gestures generally spatialise or locate the physical space in 

front of the communicator with aspects of the discourse. An example of this 

type of gesture could be pointing hand left and then right, saying "well, lane 

(pointing to the left) was looking at Peter (pointing to the right) across the 

table . . .  ". Iconic gestures convey much clearer meaning out of the context 

than deictic gestures. These gestures represent information about such things 

as object attributes, actions, and spatial relations. Iconic gestures may specify 

the manner in which an action is carried out, even if this information is not 

given in accompanying speech. As Cassell exemplified, only in "gesture " the 

speaker does specify the essential information of how the handle of the caulk 

gun is to be manipulated. 

Finally, metaphoric gestures are more representational but the concept they 

represent has no physical form; instead the form of the gesture comes from a 

common metaphor. An example is "the meeting went on and on " accompanied 

by a hand indicating rolling motion. It is not mandatory to have a productive 

metaphor in the speech accompanying metaphoric gestures; sometimes the 

"metaphors " that are represented in gesture have become entirely 

conventionalised in the language, e.g., describing the solution of a 

mathematical equation or a physics problem by students [96 ]. 

Kwon et al . [97] showed that the student 's  gesture is often transformed from a 

pictorial metaphoric/iconic gesture to a deictic gesture of simple pointing. The use of 

the three types of gestures would vary with different learning contexts. Specifically, 

43 



Chapter 3. Understanding gesture in daily communications: An Empirical study 

recent work on children communicational behavior shows that deictic and iconic 

gestures are pervasive in children' s  speech .  Interestingly, children produce deictic 

gestures before they begin to talk [4] . Recent research within psychology and 

mathematics education has looked at the role of gesture and embodiment in the 

different problem domains such as counting [98] and arithmetic problem solving [5, 

99] , suggesting that different learning situations might allow different uses of 

nonverbal cues. However, none of the research projects has identified how the 

learner' s level of skill may affect the different uses of gestures. 

3.2.1 Why humans use gestures? An account with common ground theory 

Many studies have already observed that humans tend to use some sorts of gestures in 

communication but the plausible reasons for the phenomenon are not clearly 

accounted in the l iterature. In the view of the theory of communicative action [ 100] , 

verbal communication can have the result of binding humans to each other in a 

mutually-shared pursuit of understanding. This narrow view of communication 

intentionally excludes the role of nonverbal information geared towards selfish ends. 

By contrast, Social presence theory [ 10 1 ]  and Media richness theory [ 1 02]  proposed 

that effective communication, results from matching between the characteristics of 

the media (here verbal or nonverbal communication) and the task at hands. They 

implied that nonverbal communication would sometimes be better than verbal 

communication for some tasks, e.g. ,  nodding in a dispute context. 

Accompanying with these two distinctive aspects of communication theory, Clark 's  

common ground theory [ 1 03]  suggests that if  we consider communication as a 
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collaborative activity, it can be viewed to establish a common ground between the 

speaker and the listener to develop further common ground and hence to 

communicate efficiently. For instance, pointing is the most effective deictic gesture to 

support the common ground, making both the speaker and the listener look at the 

same position. Monk [ 1 04] extended Clark 's  theory, suggesting that all the gestures 

employed by humans would be peripheral information to assist the communication. 

From a pedagogical perspective, when children are asked to explain their answers to a 

particular problem, they convey their thought not only in speech but also in gestures 

that accompany that speech. In particular, Patterson and Cosgrove [ 1 05] identified 

that children aged 4 to 8 take longer to respond, shifting their bodies more frequently, 

and moving their hands more often to convey the message that they do not understand 

than to convey the message that they do understand. 

Other studies, e.g. ,  Goldin-Meadow and Alibali [3] also showed that children can 

express what they cannot express in speech via gestures. In the l ight of both the 

experimental results and Monk' s  account, the use of nonverbal cues imply that 

speakers are having some level of difficulties to express themselves, in that they 

cannot offer the correct verbal explanations of the common ground. Therefore, if a 

gesture recognition system can detect such gestures in that context, combined with 

the understanding of what kinds of common ground is pursued, they can recognize 

the cognitive state of the user. 

45 



Chapter 3. Understanding gesture in daily communications: An Empirical study 

3 . 3 A study on gesture-enabled applications 

To gain an understanding of the gestures in the domain of the intended application, 

we performed a study of videoed tutoring sessions. Our study was based on the 

recorded videos of primary school children while describing a solution based on the 

Numeracy project learning approach. The focus of the Numeracy project is to 

improve student performance in mathematics through improving the professional 

capability of teachers. A key feature of the project is the dynamic and evolutionary 

implementation of the teaching method of mathematics. The Numeracy project 

suggests the eight developmental stages of mathematical development8. 

The next section describes how we performed an empirical study to see how gestures 

were being used by students in a mathematical problem solving situation. 

3.3.1 Experimentation method 

The experiment was based on 37 videoed tutoring sessions of primary school children 

( 1 7  male and 20 female) from New Zealand primary schools, aged 5 to 10 years, 

being tutored for mathematics.  Sitting in front of their tutor, they were asked to 

answer two separate questions. The first question was a math problem, followed by 

how they reached that answer. While they were answering both questions, they were 

not interrupted by a tutor to ensure the learner behaves in a natural way as much as 

possible. Participations in the empirical study were on a voluntary basis, and as a 

consequence, there was not an equal sample size over the different age groups. 

8 See http://www.nzmaths.eo.nz/Numeracy for more information . 
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The mathematical problems were adjusted to the children' s  developmental stage of 

mathematical ski l l .  This is explained in the fol lowing section. Each video clip was 

reviewed three times by an expert to identify what kinds of gestures were being used 

in the learning situation. The first review was to extract facial expression and speech; 

the second was for body and head movements ; the third review was for extracting 

hand gestures including deictic, iconic, and metaphorical gestures, as McNeil 's  

typology [95] . 

3.3.2 Participants of the experiment 

The participants of the experiment based on the Numeracy project's categorization, 

are divided into stage 0 to stage 4 (Table 3 . 1 ). According to this categorization9 : 

Students at Stage 0 are unable to consistently count a given number of objects 

because the lack of knowledge in counting sequences and/or the ability to 

match things in one-to-one correspondence. Stage I is characterized by the 

ability of students to count and form a set of objects up to ten but inability to 

solve simple problems that involve joining and separating sets, e.g., 4+ 3. Given 

a joining or separating of sets problem, students at Stage 2 rely on counting 

physical materials, like their fingers. They count all the objects in both sets to 

find an answer, as in "Five lollies and three lollies. How many lollies is that 

altogether? ". Students at Stage 3 can count all of the objects in simple joining 

and separating problems. Students at this stage are able to image visual 

patterns of the objects in their mind and count them. Finally, students at stage 4 

understand that the end number in a counting sequence measures the whole set 

and can relate the addition or subtraction of objects to the forward and 

9 http://www.nzmaths.co.nzJNumeracy 
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backward number sequences by ones, tens, etc. For example, instead of 

counting all objects to solve 6+5, the student recognizes that "6" represents all 

six objects and counts on forward: "7,8, 9, 10, 1 1 .  ". Students at this stage also 

have the ability to coordinate equivalent counts, such as "10, 20, 30, 40, 50 " to 

get $50 in $10 notes. This is the beginning of grouping to solve multiplication 

and division problems. 

Table 3.1. Different stages of mathematical skills development based on the Numeracy 
project 

Stage Students skills Number of students Yr 

Zero Emergent 10 1-2 
One One-to-one counting 9 2-3 
Two Counting from one on materials 6 3-4 

Three Counting from one by imaging 8 4-5 

Four Advanced counting 4 5-6 

3 .4 Results of the experiment 

A primary concern of this research was studying how young students in the 

mathematical learning context were using non-verbal cues such as hand and head 

gestures including iconic, deictic or metaphoric gestures. Table 3 .2 demonstrates that 

about 70% students were using some sort of gesture. In particular, all the students at 

Stage 4 were using gestures. A chi-square test was employed on this data, revealing a 

significant use of gesture over all development stages (Chi-square(4)= 2.017 ,  p < 

0.05). This was further investigated by what gestures they were employing in the 

mathematical problem-solving context. 

Table 3.2. Gesture use in the experiment. 

Stage 0 
Stage 1 
Stage 2 
Stage 3 
Stage 4 

Total 

N 

10 
9 
6 
8 
4 

37 

Using No gesture 

gesture 

7 3 
6 3 
4 2 
5 3 
4 0 

26 1 1  
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We categorized hand and head-body gestures into three levels :  low, medium and 

high. Table 3 .3  shows the different gesture patterns over the developmental stages. 

The students at the high developmental stages were using more hand gestures than 

those who at the low developmental stages; however, body gestures cannot be so 

much representative as hand gestures. This may come from the intrinsic nature of a 

mathematical solution which is very unlikely to be conveyed with head or body 

gesture. 

Non-parametric tests revealed that hand gesture was dominant over the body gesture, 

and the use of hand gestures was highly dependent on the developmental stage of 

mathematical skill (Chi-square (8) = 1 8 .55, p < 0.05). 

Table 3.3. Hand or body gesture use over developmental stage 

Stage 0 
Stage 1 
Stage 2 
Stage 3 

Stage 4 
Total 

Low 

6 
3 
1 
1 

0 
1 1  

Hand gesture 

Moderate 

0 
0 
0 
2 
0 
2 

Body/Head gesture 

High Low Moderate 

1 3 2 
3 3 2 
3 1 3 

2 2 1 
4 2 4 
1 3  1 1  12  

High 

0 
1 
0 
1 

0 
2 

In most cases, students used their hands for describing their thoughts or the solution 

to the problems. For instance, "more" or "less" consisted of a single touch of the table 

or indication of a particular point in the air, followed by another tap or touch to the 

right of the first one (more) or the left of the first one (less). Figure 3 . 1  shows some of 

the samples selected from the recorded videos in a primary School in New Zealand. 

Figure 3 . 1 a, illustrates the starting of one of these frequent gestures, with arrow 

indicating that the gesture concluded with a tap to the right. The single gesture that 

referred explicitly to "adding" consisted of waving two hands crossed, as illustrated 
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in  Figure 3 . 1  b .  Those two cases were considered as metaphoric gestures. We also 

categorized pointing and counting gestures as deictic gestures. Figure 3 . 1 c  

demonstrates a placing gesture toward the right, indicating the location in gesture 

space, and Figure 3 . l d  shows a counting gesture for an adding task at hand. 

(b) 

(c) (d) 

Figure 3.1. (a) A metaphoric gesture: indicating an imaginary point accompanying speech, 
(b) A metaphoric gesture: waving hands accompanying speech, (c) A deictic gesture: 
counting, and (d) A deictic gesture: pointing. 

However, the iconic gestures introduced by McNeil ' s  typology have not been 

recognized in this experiment. Figure 3 .2 shows a clear pattern of gesture use over the 

development stages. In the higher stages such as stage 3 and 4, the children used more 

metaphoric gestures rather than deictic gestures. However, this  is not the case for the 

students at Stages 0 - 2. These results ware assessed for each developmental stage 

using non-parametric analyses. In Stage 0, significantly many children used deictic 

gesture, whereas in more advanced stages (Stage 3 and Stage 4), they were using 

metaphoric gestures. 
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Figure 3.2. Distribution of gestures over development stages 

3 . 5  Conclusions 

The result of the experiment in this chapter showed that children in the lower age 

groups under consideration had mostly deictic hand gestures which were not 

dependant on speech. These gestures are silent messages that may solely reveal the 

cognitive state of the learner. In summary, children in the higher developmental 

stages use more speech-relevant gestures, i .e. ,  metaphoric gestures. On the other 

hand, the experimental result also highlighted the relatively high rate of 30% using no 

gestures shows that gesture as the only assessment factor is not reliable in tutoring 

environments. However, it can be considered as an adjunct technique along with other 

nonverbal cues and verbal information. 

Although, results of our study were based on a small group of children, and cannot 

therefore be relied as a foundation, they highlight two factors which should be 

considered in a gesture-enabled system in this context. Firstly, children use different 

gesture patterns at different developmental stages. Secondly, it is obvious that 

recognizing metaphoric gestures, which convey more representational meaning, 
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cannot be accomplished using a snapshot of student' s  hands. This type of gesture is  

always described by a combination of hand movements and conveyed by 

characteristic such as direction, force or tempo, even with verbal information. 

Therefore, it is necessary that other characteristics be collected and analyzed on a 

sequence of images. 
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4. 1 Introduction 

One of the problems in vision-based gesture recognition systems is segmenting the 

hand image from the background [39] . The approaches for solving this problem are 

either to limit the environment to a non-cluttered background or to use markers to 

make the hand region easily distinguishable from the background [ 1 06] . In many 

cases using hand markers is impossible due to the type of application (e.g. Analyzing 

a recorded video). The use of available features of the image is more practical and 

therefore preferable. In this context, the skin color as a feature for segmentation to 

detect and track human-body parts is a popular and promising technique. 

Although skin color is invariant against modifiers like scale, rotation and shape, 

segmentation of skin color from a cluttered background is not accurate enough to be 

applicable to real-world applications. A fast and robust technique for skin color 

segmentation is still an open research question. 

4.2 Research background 

Skin color detection and segmentation can be identified as a conjunction of two 

methods: "color space" and "skin color model" [50] . 
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4.2.1 Popular color spaces used for skin color segmentation 

Conceptually, color is not a physical phenomenon. It is a perceptual phenomenon that 

is related to the spectral characteristics of electro-magnetic radiation in the visible 

wavelengths striking retina [ 46] . Digital image processing and different video signal 

transmission standards have introduced many color spaces carrying different 

attributes and characteristics .  Some of the color spaces have been studied for certain 

circumstances and for different applications. Meanwhile a wide variety of these color 

spaces have been applied to skin color modeling and segmentation, including RGB, 

ICrCb, HSV, HSI, HS and IUV color spaces [ 1 2, 42, 46, 56, 75,  107- 1 12] .  

The main idea i n  these approaches i s  using a set of manually segmented images of 

skin patches as sample data, to estimate a skin color probability density function 

(PDF) in the col or space. This procedure is referred to in the literature as "training". 

The result of training in most of the color spaces is a connected region, and the 

boundaries of the probability density function in the col or space can be estimated by a 

l imited number of surfaces, lines or points. Obviously, a larger number of dimensions 

in the color space would require a larger amount of training data and memory space, 

in addition to more thresholds to specify the desired region. 

In some of these color spaces, intensity is implicit (e.g. RGB color space) or it is one 

of the dimensions (e.g. HSI, IUV, ICrCb). This makes a classifier based on these 

color spaces vulnerable to intensity changes in the detection phase. For covering a 

wider range of intensities, a bigger region in the color space is required which may 

produce more false detections and in turn less accuracy in the final results. A smaller 
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region in the color space on the other hand reduces the number of false detections 

while also reducing the number of correct detections resulting in a weaker classifier. 

An overview of different color spaces and their features is presented in Table 4. 1 .  

Table 4.1. An overview on color spaces and their applications in skin detection 

Calor 
Space 

RGB 

HSV 
HIS 
HS 

XY 

Opponent 

rgb 
rg 

YCrCb 
CrCb 

luv 
uv 

Formulation 
(based on RGB) 

Red, Green and Blue calor 
components each normally 
represented by a byte 
(0 . .  255) 

H ( .J3(G - B) ) = arctan 
(R -G) + (R - B) 

S = 1 _ 3  
min(R,G, B) 

R + G + B  

f = � (R + G + B) 
3 

V = max(R,G, B) 

X=S cos(H) 
Y=S sin(H) 

o1 (R,G, B) = (R-G)/2 
o2(R,G,B) = (28-R-G)/4 

r = RI(R+G+B) 
9 = G/(R+G+B) 
b = B/(R+G+B) 

Y=0.299R+0.587G+0. 1 1 4B 
Cr=R-Y 
Cb=B-Y 

I = (R+G+B)/3 
u = R - G  
v = G - B  

Applications 

Very popular due to its wide use in CRT devices. 
High correlation between channels and mixing of chrominance and 
luminance data make RGB color space not very suitable for color analysis. 
However this color model was applied in  some of the skin detection 
methods. 

Hue, Saturation and Intensity is a color representation based which is 
supported in most of the image editing applications, and was also applied 
successfully for skin detection [71 ,  75]. 

A different representation of H u-Saturation using Cartesian coordinates 
The polar coordinate system of Hue-Saturation spaces, resulting in cyclic 
nature of the color space makes it inconvenient for parametric skin color 
models that need tight cluster for best performance [50]. 

Inspired from the fundamentals of human perception 
According to Gevers [1 1 3] it is independent of highlights and robust to 
changes in intensity. 

Discarded intensity, and less sensitive to intensity changes 
Can be applied for color detection in  very low or very high intensity [1 14]. 
Hence r+g+b= 1 ,  then one of the color components can be omitted in 
analysis. This feature decreases the color space to 2 dimensions making 
processing and visualizing statistical analysis (e.g. Histograms) easier [70, 
1 1 5, 1 1 6]. 

YCrCb is an encoded nonlinear RGB signal, commonly used by European 
television studios and for image compression. 
The transformation simplicity and explicit separation of luminance and 
chrominance components makes this color space attractive for skin calor 
modeling [50, 54] 

Some of the video cameras support this method of color representation [42, 
1 1 7] .  

4.2.2 Is there an optimum10 color space for skin color detection? 

Albiol, Torres and Delp in [ 1 1 8] assert that because the separability of the skin and 

non-skin classes is  independent of the color space chosen, the color space itself does 

10 The word "optimum" here, refers to a color model which using that we can gain the highest correct skin detection ratio 
and the least false skin detectioo ratio in the image. 
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not have any influence on the optimum skin color detector for that color space. The 

mathematical proof is as follows. 

Let D( Xp) be an optimum skin detector defined in calor space C and T( Xp) be an 

inverse function that transforms the pixel values Xp from calor space C into 

calor vector x 'P in calor space C '. Then there exists another skin detector 

D '(xp) with the same detection rate and false alarm rate given by: D '(x 'p) = 

D(T1(x 'p)) 

Now, assume there is another optimum skin detector in calor space C' which 

has higher detection rate than D '  called D ". This means we should have 

another function (D "y-1 in calor space C, with an accuracy better than D, which 

is contrary to the hypothesis. Based on this assertion there is no advantage in 

choosing a specific calor space. 

Although the above assertion is mathematically correct, some limitations including 

processing speed, training time and complexity of the classifiers have made this 

remain as a dilemma. Computation of the skin detection function D, in a certain color 

space may be significantly more expensive than another color space. Therefore, the 

choice of a color space together with a skin model to classify the skin region with 

maximum accuracy is still a topic of ongoing research .  

In another research, Shin, Chang and Tsap [ 1 1 1 ] have reported the result of  a study 

on using 8 different color spaces. They have compared clusters of skin and non-skin 

in CILAB, CIEXYZ, HSI, rgb, CrCb, YIQ, YUV and RGB color spaces, based on 

four metrics. The matrices they have used are, tr[Sw]/tr[S8] and tr[S- 1 wS8] (which are 

based on scatter matrix) and histogram intersection (HI) and histogram error (HCE) 

(that are based on histogram analysis). Their experiment showed that the results of 
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scatter matrix analysis vary for different color spaces, but for other metrics especially 

the histogram based metrics, the difference is minimal. They finally conclude that the 

RGB and CrCb are better than other color spaces for skin color detection because the 

separation factor of skin/non skin is higher in these color spaces. 

4.2.3 Skin color segmentation techniques 

Color models for estimating the distribution of skin color in the color space can be 

classified into two general categories [ 1 1 9] , parametric and nonparametric. These 

approaches are fundamentally the same and require statistical analysis of the sample 

data. The result of analysis is a PDF which can be estimated by a set of parameters. 

Hence, the skin detection can be implemented either using the parameters specifying 

the PDF or the PDF itself. Generally, nonparametric approaches work effectively 

when the quantization level can be set properly and sufficient data is available. 

However, how to select a good quantization level for color histogram is not trivial . 

Vezhnevest et al . [50] in a survey on pixel-based skin color detection techniques 

concluded that: 

• Parametric skin modeling methods are better suited for constructing classifiers in 

presence of limited training and expected target data set. The generalization and 

interpolation ability of these methods makes it possible to construct a classifier 

with acceptable performance from incomplete training data. 

• The methods which are less dependent on the skin cluster shape (e.g. SOM) seem 

more promising 

57 



Chapter 4. Adaptive skin detection 

• Excluding color luminance from the classification process cannot help m 

achieving better discrimination of skin and non-skin colors, but can help to 

generalize sparse training data 

• Evaluation of color space regardless of a specific skin color modeling can not give 

a clear indication of how good the color space is. This is due to the fact that 

different color models react very differently on the color space changes .  

A comparative evaluation of different skin detectors is presented in Table 4.2. 

Table 4.2. Comparative evaluation of different skin detectors 

Method True Positive 

RGB Statistical modeling [47] 80% 
90% 

Bayes SPM in RG [51 ] 93.4% 

Maximum Entropy Model in RGB [1 20] 80% 

SOM and Hue [ 1 2 1 ]  78% 

Elliptical boundary model in  CIE-xy 90% 
[1 22] 

Single Gaussian in  CbCr [1 22) 90% 

Thresholding of I axis in YIQ [51 ]  94.7% 

4.2.3.1 None-Parametric skin color classification 

False Positive 

8.5% 
14.2% 

19.8% 

8% 

32% 

20.9% 

33.3% 

30.2% 

One of the most comprehensive studies on statistical skin detection in RGB color 

space, is the work of Jones and Rehg [47] at Compaq's  Cambridge Research 

Laboratory. They have used a large data set (4675 images containing skin and 8965 

images not containing skin) for training and testing an ROB-based statistical model of 

skin. They compared the histogram and Gaussian mixture model, and showed that the 

histogram models slightly outperformed the Gaussian models in this context. In 

addition to the performance they have stated that the training of the Gaussian 
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classifier took 24 hours usmg 1 0  parallel Alpha workstation. This volume of 

computation is considerable in comparison to the histogram model which took several 

minutes on a single workstation. 

They derived a skin pixel classifier through the standard likelihood ratio approach. A 

particular RGB value is labeled skin if: 

P(rgb I skin) e 
_..:.._:=: __ _..:.._ > .  
P(rgb I -,skin) 

- (4.1) 

Where 0 � e � 1 is the threshold which can be adjusted to trade-off between correct 

detections and false positives. They have reported a detection rate of 80% with 8 .5% 

false positives. 

This research with regards to the preparation of such a large dataset for training the 

classifier is unique1 1 • They also claimed that using a large amount of training data, 

even simple learning rules can yield good performance. This is generally not true. 

The over training is a known problem in some classifiers, and according to their 

article as more data is added, performance of the training set decreases because of the 

increasing overlap between skin and non-skin data. 

Kuchi et al . [ 1 23]  used CrCb col or space and statistical col or mode ling for skin col or 

segmentation and face tracking in video sequences. They have shown that the color of 

human skin pixels in confined to a small region in CrCb color space which according 

1 1  The dataset known as the "Compaq skin dataset" in the literature is no longer publicly available. 
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to Menser and Wien [ 1 24] can be formulated by a Gaussian distribution. Therefore, 

the probability of a skin pixels versus non-skin would be: 

(4.2) 

where J.ls and cr5 respectively represent the mean vector and the covariance matrix of 

the training data. Now the probability that a pixel c represents skin can be evaluated 

using Bayes' theorem as fol lows: 

( k . 1 )  p(c l skin) p s m c =  p(c I skin) + p(c I non s kin) 
(4.3) 

Calculating the above probability requires knowledge of the "skin/non skin" which is 

nondeterminist in real-life applications but can be estimated using preprocessing. 

Kuchi et al . [ 1 23]  have not indicated the accuracy of their skin detection method and 

the details of the experiments, but they have mentioned that they achieved an overall 

accuracy of 82% for face detection in 120 general images downloaded from the 

intemet. 

Kjeldsen and Kender [48, 1 25] have described a technique based on HS color space 

for separating a single hand from a cluttered background in a gesture recognition 

system. Their segmentation approach is based on a histogram-like structure called 

Color Predicate (CP), which is basically an HS histogram which can hold negative 

values belonging to the background pixels. Each cell of the CP is equal to "ns-nb", 

were n5 and nb are the number of skin hits and the number of background hits in that 

cell respectively. They have not indicated the accuracy of this method but they have 

mentioned that the result of using CP without negative training has been very poor. 
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The concept of CP for calculating the intersection of two histograms, has correlation 

to the method introduced by Zhu et al . [ 1 09],  with the advantage of requiring less 

computation and therefore faster processing speed. 

Hua, De Silva and Vadakkepat [ 1 1 7] applied skin col or segmentation based on uv 

color space for face tracking in noiseless environment. They reported the skin color as 

a feature that is non-invariant to rotation to keep the face in view by a pan-tilt camera. 

Their experimental results show that this color model is sensitive to different skin 

tones, and therefore the skin detector might be adjusted for different skin tones. 

4.2.3.2 Parametric skin color classification 

Kolsch and Turk [ 1 26] have used a parametric approach for detecting a group of 

features they called "flocks of features", for hand tracking. 

Ruiz-del-Solar and Verschea [ 1 15] have proposed a fuzzy skin segmentation 

approach that uses neighborhood information of a given pixel and a diffusion process. 

The diffusion process is  controlled using three thresholds: one for determining the 

minimal acceptable "skiness" of a skin pixel , one for controlling smooth changes of 

the pixels "skiness" between neighbors, and a third one for determining the seeds of 

the diffusion process. In this approach, a pixel belongs to the skin class only if it has a 

probability of belonging to the skin class over a certain threshold, and if some of its 

neighbors, were previously classified as belonging to the skin class. 

Using the histogram as a probability density function, as mentioned in Ruiz-del-Solar 

and Verschae [ 1 15 ] ,  and calculating membership probability to skin color based on 
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neighborhood pixels, can reduce the number of morphological operations that are 

required for noise removal . However, the assumption that the skin color of the current 

user has the highest probability in the probability density function is not always 

reliable. Figure 4. 1 presents a filtered image based on probability density of pixels. 

Lighter pixels have highest probability in the training data and darker pixels have the 

lowest probability. In this condition, the segment that belongs to the skin color of the 

user is slightly darker than the segment that belongs to the surface of the table. 

Therefore using the work of Ruiz-del-Solar and Verschae [ 1 15 ] ,  the best case 

scenario would be segmenting the surface of the table as well as the skin region, 

which means a weak skin detector. 

Figure 4.1.  In some conditions, the probability density of the skin color of the user is lower 
than some of the unwanted regions like wood color. 

Imagawa, Lu and Igi [75] have used a mixed approach based on locating the face 

using non-invariant features and estimating the color probability density function for 

segmenting hands. This idea because of the retraining and adapting to the color space 

that is used in the image, is more robust. However, in comparison to other methods, it 

requires a significant amount of computation for face detection. In addition, most of 

the fast face tracking techniques [55] are not robust to changes like rotation or to 
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situations where a complete frontal view of the face is not presented. This weakness 

can be remedied by using rotated images at training time and by improving the face 

detection technique [23, 60, 63, 64] .  However, using one of these techniques in itself 

requires a considerable amount of computation for the detection. 

The skin calor PDF can also be estimated using other techniques such as Artificial 

Neural Networks or Support Vector Machines. In this context, ANN is one of the 

techniques which has been used in research. Neural networks are parameterized non­

linear models which are used for empirical regression and classification modeling. 

The flexibility of neural networks makes them a good tool for discovering more 

general relationships in the data than the traditional statistical modeling methods. 

Chen et al . [ 46] described a method of skin detection using rg col or space and a back 

propagation neural network of five neurons with three layers. The inputs of the net 

are r and g calor components, and a single output 1 or 0 shows whether the input 

pixel is skin or not. The weight of the neurons' input is randomly initiated. These 

weights then are re-calculated in the training stage using a set of manually segmented 

skin pixels. After the training stage, the neural net is used for skin calor classification 

by scanning the image, pixel by pixel . Although they have not indicated the details of 

the training and the accuracy of the classification method, according to their results 

on images containing a single face, there is a high false detection together with 

correctly detected pixels. The high percentage of false detection makes this approach 

unreliable for skin detection. 
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The self organized maps (SOM) methodology which dates back to the early 1 980s 

and has been applied to a wide variety of applications including data mining, speech 

processing, finance engineering, text organization and retrieval and even online game 

industry [ 1 27] ,  was proposed by Brown, Craw and Lewthwaite in [ 1 2 1 ]  for skin 

color detection. SOM is a neural network with a lattice topology of k neurons. Each 

neuron is associated with a codebook lli of codebook vector Jl, and each is connected 

to a certain number of neighboring neurons. Training of the SOM involves randomly 

initializing the codebook vector and then sequentially presenting each training 

sample. Each training data v is presented as an input vector to all neurons in the 

network, and the winning neuron ne with codebook vector � is determined such that: 

(4.4) 

Then the neurons in a specific neighborhood of the wmmng neuron have their 

codebook adjusted to a value closer to the input vector according to a parameterized 

learning function. As training progresses, the learning rate and the size of the affected 

neighborhood is decreased, and the lattice gradually forms a topologically ordered 

mapping of the training data. This map is in fact the feature map of the training data. 

Brown, Craw and Lewthwaite [ 1 2 1 ]  have applied the SOM for skin detection in  

frontal face images, and reported 95 .5% accuracy of  skin detection and 94% accuracy 

on facial images. However, according to their demonstrated results on images 

containing non-face skin and general applications, high false detection makes this 

approach unusable with the proposed configuration. The other issue on this method is 

the computation cost of the SOM, which is potentially expensive. The SOM in their 
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research was implemented usmg SOM hardware, which of course dramatically 

increases the processing speed in comparison to a software based SOM. 

Wu and Huang [ 1 19] introduced an alternative nonparametric approach based on 

SOM, called SASOM (Structure Adaptive SOM) for skin color segmentation. The 

color distribution of each image frame could be modeled by an SASOM, in which 

each neuron represents a color cluster for the image in the current time frame. 

SASOM is basically an SOM neural network which adapts its structure to the training 

data using a heuristic function. Some operators like growing, pruning and merging are 

applied to the network to modify the structure of the neural network. The 

modification of the neural network continues until the SASOM reaches its stationary 

status. This classifier may not be good for the next image frame because of the non­

stationary nature of color distributions. Therefore a new SASOM is needed for the 

new image frame. Their solution to this problem is called SASOM transduction, 

which updates the weights and structure of the trained SASOM according to a new 

training dataset. According to their article, the confidence level of the SASOM for 

50% labeled data is close to the confidence level of 100% labeled data. This means 

that this neural network using a semi-supervised training can be successful for the 

intended application. Although, providing 50% correct training data for a real-world 

application is not always feasible, the method shows improvement in comparison to 

SOM in providing the same result with a smaller number of neurons. 
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4.2.4 Adaptive learning of the skin color 

Parametric and non-parametric skin color classification methods introduced in the 

previous section are based on two distinctive steps of training and classification. The 

first step is identifying a PDF and the second step is applying the PDF for skin 

detection. The PDF estimation is therefore static and we call these methods static skin 

detection. There are several scenarios in which a static skin detector will fail in 

accurately detecting the skin color. Furthermore, the role of the color model becomes 

significant in presence of the varying features of the skin color. Change of 

illumination is a typical feature of some applications. For instance, the skin color of a 

person walking along a corridor passing the light source would have some significant 

changes in intensity factor. Si gal, Sclaroff and Athitos [ 1 28] have reported the results 

of a study on skin color-based video segmentation under varying illumination. They 

proposed an adaptive approach for tracking a moving-skin color distribution as 

defined by an adaptive color histogram in HSV color space of size 32x32x32. Their 

approach is based on the Starring et al . [ 1 29] research that has shown that skin 

reflectance locus is closely and directly related to the locus of the illuminant, and also 

based on their observation that skin-color distribution changes smoothly in time 

varying lighting. 

They have used an explicit second order Markov model to predict evolution of the 

skin color distribution over time. The evolution of the distribution is implicitly 

defined in terms of translation, rotation, and scaling of the samples in color space. 

Skin-color Histograms are dynamically updated based on the feedback from current 
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segmentation and prediction of the Markov model . Parameters of the discrete-time 

dynamic Markov model are estimated using Maximum Likelihood Estimation, and 

evolve over time. They have measured the accuracy of skin and non-skin detection 

and the trace of confusion matrix which on average are 86.84%, 93.55% and 1 .8 

respectively . The numbers showing the accuracy of their skin classifier are slightly 

better than results reported from other research so far (2004) .  However, it has to be 

highlighted that their ground truth data contains three values:  true, false and "don't  

care" which makes their results to not be comparable to those researchers who have 

used true/false ground truth data. 

Zhu et al . [ 1 09] proposed a method for adaptive learning of the skin color in still 

images using HS color space. Their approach is based on a two step process. In the 

first step a general skin classifier performs a rough skin classification. In the second 

step a Gaussian Mixture Model (GMM) is derived using the standard Expectation­

Maxirnization algorithm. Then by incorporating the spatial and shape information of 

the skin pixels to a Support Vector Machine (SVM), one of the Gaussians from the 

GMM is selected as the skin color model. They have reported accuracy of 88.72% to 

96.57% using different features of the Gaussian kernels. The best accuracy achieved 

has been through applying the "Spatial" and "Shape" related features of the kernel. 

They have also reported a false positive rate of 30%-37% which is considerable and 

makes the overall accuracy questionable. The processing speed was not reported in 

their article. However, it is obvious that the processing time is bound by two passes 

through the input image and one pass on the HS histogram in addition to the required 
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computation for finding the Gaussian distributions and SVM ' s  classification time. 

The process explained might be expensive for a personal computer and in turn 

inappropriate for real-time processing of video sequences. 

4 . 3  The global skin detection algorithm 

Based on the discussion of the limitations and the results of other research work 

discussed in section 4.2, in this research we have used hue thresholding for 

classifying skin pixels and filtering the image. This representation is a one 

dimensional color space and requires a small color space and therefore a smaller 

number of samples is required for training12. Moreover, the skin color region can be 

specified by two thresholds. The pixel-based skin detection implementation requires 

only a few CPU instructions per pixel [ 1 10] ,  that makes it a good candidate for real­

time skin detection. In addition, it is reliable for ideal conditions with no background 

noise (e.g. special applications, or using a blue background - Figure 4.2). 

Figure 4.2. (a, c) Original image, (b, d) Filtered image using Hue thresholding. 

12 In fact each pixel requires just two integer comparison 
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Based on the above description, we developed a static skin detector usmg hue 

thresholding. We called this system Global Skin Detector or GSD (Figure 4.3). 

Training data Skin colour Hue 
Histogram 

Figure 4.3. Overview of the global skin detector 

Skin colour Hue 
Tlu·esholds 

Although, a GSD can detect the actual skin pixels with a reasonable success rate, it 

also falsely detects some non-skin pixels .  In addition, it cannot distinguish those 

objects that have a hue factor similar to skin color (e.g. wood). In some situations 

even the amount of falsely detected pixels is more that the actual skin pixels, which 

makes it impractical for real-world applications (Figure 4.4). 

Figure 4.4. (a, c, e) Original Images, (b, d, 0 Filtered image based on thresholding Hue factor 
of skin color extracted from training data (Hue factor of the color of the some background 
objects are similar to skin color). 
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4 .4 The adaptive skin detection algorithm 

Our observations show that: 

1 .  The peak, including position and height, and width of the training 

histogram are dependent on the image grabbing hardware, and therefore 

the best results for a static (separate training and detection) algorithm can 

only be achieved by using the same hardware. 

2. Manually changing the lower and upper bounds of the thresholds can 

significantly improve the results, and the new thresholds are always inside 

of the boundaries of Global Skin Detector. 

This observation, and the fact that in a video sequence people normally move their 

head or hands, lead us to the idea of adapting the Global Skin Detector' s  thresholds. 

The information of the skin in the image can be re-evaluated locally using motion 

features of the image. That means improving the detection of the skin color through 

time, as described in the following. 

1) Training the Global Skin Detector using a set of training data and specifying the 

thresholds of skin color in hue color space. The detailed description of this step is 

introduced in section 4.6. 1 .  

2) Detection of in-motion skin pixels 

The next step is detecting the in-motion pixels of the image, using a motion detection 

algorithm, and filtering the detected pixels using the Global Skin Detector. The output 
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of this step, are those pixels that with a higher probability belong to the skin regions 

of the image. 

3) Recalculating the thresholds 

In the next step, the pixels that were considered as moving pixels belonging to the 

user's  skin are used for retraining the detector. In this dissertation we have used a 

histogram of Hue factor as the base for calculating low (T L) and high (Tu) thresholds 

for filtering the image. From the in-motion skin pixels (Figure 4.8c), another 

histogram is extracted, and the second histogram is merged with the original 

histogram using the following equation: 

Hn+l = ( 1 -A)*Hn + A*HM 
o Hn+l is the new histogram for skin detection (for the next frame) 

o Ho is the histogram for skin detection in the current frame 

o HM is the histogram of the in-motion pixels of the skin color (Figure 4.8c) 

o and A, is the weight for merging two histograms. 

Empirical results show that a value between 0.02 - 0.05 gives the best output for the 

final skin detector (Please refer to Figure 4. 10) .  The graph presenting the relationship 

between the merging factor, correct detection and false detection in Section 4.6.3, 

also validates our empirical results. 

4) Filtering using adaptive skin detector 
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For each frame, thresholds of the Hue factor are recalculated such that they cover 

90% of the area of the new histogram. The filter for each frame could be described as 

follows: 

/(!) = {true if TJJfJ<::, f <::, T)JlJ} false else 
o I is the Hue factor for each pixel 

o Hn is the Hue histogram for the skin color 

o TL is the calculated lower threshold for histogram Hn 

o Tu is the calculated upper threshold for the histogram Hn. 

4.4.1 The algorithm in summary 

Figure 4.5 presents the block diagram of the adaptive skin detector. 
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Figure 4.5. Overview of the adaptive skin detector 
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Figure 4.6. Changes in the lower threshold and upper threshold between frames 0 and 2791. 
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4.5  Motion detection for adaptive skin detection 

Motion tracking and detection has attracted considerable research interest in the 

computer vision community . As a result, there are many different solutions proposed 

for this problem. Some of the proposed methods are based on the idea of frame 

subtraction [88, 1 30, 1 3 1 ] .  Alternately some others use more complex features for 

tracking motion [62, 1 32, 133 ] .  Hence, there are multiple choices available to be used 

together with the adaptive skin detection algorithm. Choosing an appropriate method 

is however an open research question. We employed two motion tracking methods 

and measured their effect on the adaptive skin detection algorithm. The first method 

used was the basic frame subtraction method, and the second was the optical-flow 

motion tracking proposed by Lucas and Kanade [ 1 34] . 

4.5.1 Underlying assumptions 

We should note that in this study, our pnmary assumption has been that the 

background is not moving, the camera is in a fixed position, and the person' s  body is 

the only moving object in front of the camera (e .g. Figure 4.7). 

(a) (b) 

Figure 4.7. Testing environment, (a) Camera view, (b) Configuration settings. 
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4.5.2 Frame subtraction motion tracking 

Frame subtraction is one of the basic methods for motion detection in video 

sequences. This method is based on comparing corresponding pixels of two frames 

and considering those pixels with a difference larger than a certain threshold, as 

changed pixels. In ideal conditions, changed pixels can potentially belong to a 

moving object. Although this technique is not reliable for recognizing the moving 

object itself, it requires a small memory space (one frame) and a small number of 

operations per pixel (integer subtraction) . These characteristics make it suitable for 

real-time image processing applications. 

For comparing two pixels, we tested different components of the pixel for 

comparison, including RGB, CrCgCb, Hue and Intensity. Our observations show that 

the most reliable results are reached from RGB and Intensity comparison, and results 

from those components that did not carry intensity information were not reliable for 

motion detection. In the final implementation of the frame subtractor, we used 

Intensity component of the pixels for comparison. 

In a real world application, the frame subtraction technique has two main problems. 

The first problem is  that the noise in CCD cameras can cause some sparse falsely­

detected pixels. This effect can effectively be eliminated, using an Erode 

morphological operator. Another problem is that a moving object in a 2D image fills 

the space that was the background in the previous frame, and the background fills the 

pixels that were previously the object. Thus, we have two sets of pixels .  One set 

belongs to the object, and the other set belongs to the background. We solved this  
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problem by ignoring those pixels that could not pass through the primary filter for 

skin color detection. Considering the fact that the body of the subject in the video 

sequence is the only moving object and the camera is in a fixed position, the 

probability of detecting some parts of the skin will be higher than non-skin (Figure 

4.8c). 

. .. . ·':.� 

.I \ \ \  '---------'(c) 
Figure 4.8. A moving hand: (a) Original image, (b) In-motion pixels of the frame, filtered 
using Hue thresholding (c) Mapping the result to the original image. 

4 . 6  The experiment 

4.6.1 Specifying the thresholds of the Global Skin Detector 

For calculating initial hue thresholds for skin color, a set of training data of 20 

colored images (approximately 3200000 pixels) of hand in which the skin region had 

been manually segmented were used. Half of these images were recorded in-house 

using a Dragonfly digital camera, and the other half collected from the Internet. Using 

this data, a histogram for hue factor was calculated and the lower and upper bounds of 

the threshold specified such that 90% of the pixels inside the histogram were covered. 

The values of 3 and 43 were calculated for lower and upper hue thresholds 

respectively.  The range of hue factor was 0 to 255 calculated by RGB values of the 

input pixels. 
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4.6.2 Ground-truth data 

For evaluating the algorithm, we used three video sequences. Two of the videos are 

from a human-human interaction and the third is from a human-computer interaction. 

The length of all of the sequences was 625 frames. The camera was in a fixed 

position in all of the sequences, there was no movement in the background, and the 

lighting condition was constant. Table 4.3, presents the detailed information of the 

image datasets. 

The ground-truth data was manually prepared for frames 1 to 625 by equal distances 

of 25 frames. Each ground-truth frame was an image containing the skin regions 

(Figure 4.9b). 

Table 4.3. The characteristics of the image datasets used for the experiments 

Dataset 1 

Video recording Unknown 
device 

Resolution 384x288 

Source Anvil - Gesture 
analysis toolkit14 

Frame rate 25fps 

Output image RGB 

Number of people 2 
in the scene 

1 3  http://www.ptgrey.com/products/dragonfly/ 

14 http://www.dfki.de/-lcipp/anviV 

15 http://www-2.cs.cmu.edu/%7EciVv-images.html 

Dataset 2 Dataset 3 

Unknown Dragonfl1 digital 
camera1 

352x288 320x240 

CMU Test Images - Prepared by the 
Paris datasee5 author 

25fps 1 5fps 

RGB RGB 

2 1 
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Figure 4.9. Samples of the input images and their ground-truth data. 

The first dataset was a video clip of a news interview in which most of the hand and 

face movements were made by the person on the left side of the image (Figure 4.9a). 

The second dataset was a chat session between two people (Figure 4.9c). The man on 

the left side of the image played with a pen using both hands, and the woman on the 

right side of the image played with a billiard-sized ball .  Both subjects have hand 

movements and slight head movements while talking. The third dataset was a side 

view of a computer user interacting with computer. He had slight head movements to 

look at the keyboard and a few hand movements during the interaction. 
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For evaluating the algorithm we run the adaptive skin detector on all three datasets. 

The adaptive skin detector was running continuously to the end of the experiment. 

The evaluation procedure was performed based on the output of the adaptive skin 

detector compared to the ground-truth data. 

4.6.3 Measured parameters 

We measured four parameters for each output based on its ground-truth data and for 

each dataset separately: 

1) Correct detection ratio (Re) is the number of correctly detected skin pixels to the 

actual number of skin pixels in the image. In the ideal system this factor would have a 

value of 1 .  

2) False detection ratio (Rr) is the number of falsely detected pixels to the actual 

number of non-skin pixels. In the ideal system this factor would have a value of 0. 

3) Peifonnance (P) of the algorithm is defined as follows: 

(4.6) 

As indicated by this formula, the perfonnance is equal to 1 ,  when Rc=1 ,  and Rr=O. A 

bigger value for Rr makes the peifonnance a smaller number. The ideal system has a 

performance equal to 1 ,  which means there is no false detection, and 100% correct 

detection. 

4) and finally the unreliability rate (UR) that is the number of falsely detected pixels 

to the number of actual skin pixels. This factor represents the extent of the inaccuracy 
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(or accuracy) of the output. For instance a value of 2 means the number of falsely 

detected pixels is 2 times more than the total number of actual skin pixels. Obviously 

a smaller number for this factor indicates a better output. The ideal value for this 

factor is zero, which means there is no falsely detected pixel, and 100% correct 

detection. The reason for introducing this parameter is that the false detection ratio 

cannot represent how inaccurate the output is. For instance it is possible to have an 

Rr=0 . 1 ,  which is a small number, but the number of falsely detected pixels to be more 

than the number of correctly detected pixels (Figure 4. 1 1 -f), and therefore Rr alone, 

may give a false impression of the accuracy or usability of the output. 

4.6.4 Choosing the merging factor 

For indicating the best value for the merging factor of the adaptive algorithm, our 

empirical results showed that a value between 0.01 and 0.05 produces the best 

outputs. The experiment (Figure 4. 1 0) also confirmed this observation. Increasing the 

merging factor parameters causes a drop in both correct and false detections. 

Obviously we are interested in keeping the correct detection high and making the 

false detection lower. As indicated in the Figure 4. 1 0, to have a reasonable correct 

detection ratio, the merging factor should be between 0.0 1 and 0.06. 

Choosing a merging factor of 0, in fact causes the algorithm to be non-adaptive, and 

to act the same as a global skin detector. Although that causes the highest number of 

correct detections but it also produces a high number of false detections. On the other 

hand, choosing a very small number for the merging factor makes the convergence 

speed of the algorithm very low. That means reaching a reasonable output and 
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adapting to the new conditions of the input (e.g. turning on a light) will also take 

more time. Also choosing a very small value, because of the round-up problem may 

have the same effect of a zero value. In the present research we have used a merging 

factor equal to 0.05 for the experiments which shows reasonable adaptive speed and 

stable output. 

� False detection -.- Correct detection 
1 

0.9 
0.8 
0.7 

0 0.6 
� 0.5 
ll: 0.4 

0.3 
0.2 
0.1 

0 
0 0 
� 0 (j) 

9 9 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 9 
� m � � � � � � � � � � � � � � � � 

M e rging factor 

Figure 4.10. The accuracy of the algorithm based on merging factor 

4.6.5 Results 

Filtering the input Image usmg the described method significantly improved the 

performance of the skin detector, by decreasing the ratio of false detections and 

keeping the ratio of positive detections high. In the initial frames, the performance of 

the adaptive and non-adaptive filter was the same. In Figure 4 . l lg, the surface of the 

table caused false detection, as the number of its pixels is approximately bigger than 

positive recognition. The rigid blobs of falsely detected pixels cannot be removed 

using morphological operations. The output of last frame shows significant 

improvement in false detection ratio (Figure 4. 1 1  h). 
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First frame First frame output Last frame Last frame output 

2 

3 

(i) Ul (k) (I) 

Figure 4.11 .  The changes in the output over the time. 

Figure 4. 1 7  presents the behavior of the algorithm in correct detection ratio. An 

average ratio of 0.8 is  gained after frame 35 1 ,  which remained approximately 

constant. The false detection ratio indicated in Figure 4. 17 ,  after frame 35 1 ,  a false 

detection ratio approximately equal to 0.05 has resulted and remained constant to the 

end of the video sequence. The performance of the algorithm, after frame 25 1 ,  was 

relatively stable between 67% to 72% which combined with the low ratio of false 

detection, represents the stability of the algorithm over time. 

The unreliability rate significantly changed over time. For instance, the ratio for 

dataset 2, that was initially 7 ,  dropped to 1 in frame 476, and slowly climbed to 1 .8 in 

frame 60 1 .  As represented in Figure 4. 1 7d, the output for dataset 2 is  initially very 
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unreliable, but in the last frame output, the detection quality is  much better. However 

there are still some small falsely detected regions. The reliability rate for dataset 1 

and 3 was much better, and after frame 176, it was relatively constant. The output for 

all three datasets is presented in Figure 4. 17a, and shows improvement. 

4.6.6 Sparseness of the correctly and falsely detected pixels 

For measuring the sparseness of the detected pixels, we used four different 

morphological operators on the output images of the datasets . Obviously in the case 

of sparse false detections, the falsely detected pixels can be eliminated using Erode 

morphological operator. As indicated in Figure 4. 1 8, Figure 4. 19 ,  and Figure 4.20, 

there is no specific pattern on sparseness of the correctly detected pixels. However, 

there is a vertical shift in measured parameters, based on using different combinations 

of Erode and Dilate morphological operators. It is also shown that employing Erode 

operator in all cases dramatically reduces the false detection ratio which means 

falsely detected pixels are sparser than correctly detected pixels. 

4.6.7 The comparison of the behavior of the algorithm using optical-flow 
motion tracking 

We run another experiment on the algorithm to verify the effect of another motion 

tracking method. The alternative method used here was optical-flow motion tracking, 

and the experimental platform was the same as we discussed in the previous section. 

4.6.7.1 Optical flow motion tracking 

The optical-flow motion tracking technique is  a more accurate method for object 

tracking in video sequences. The idea is based on the fact that lighting condition in 
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two sequential frames is relatively constant, and therefore the intensity of each point 

of an object would be the same. If the position of a specific intensity changes in the 

next frame, then we can assume that the point has moved to the new place, in the time 

in between two frames. Tracking of the segments in optical-flow algorithm is based 

on the fact that the intensity of a moving segment changes slightly in two sequential 

frames .  Therefore, the next position of a track point will be around its previous 

position. 

Considering the possible movements that the object may have (e.g. moving left, right, 

up and down, rotation, moving toward or away of the camera), there are several 

implementations for this technique. In this research we have used an implementation 

proposed by Lucas and Kanade [ 1 34] which is called Lucas-Kanade optical-flow 

tracking, and is available in OpenCV [ 1 35 ] ,  as measurement for motion tracking. The 

implementation is based on choosing a number of tracking points, a small block size 

to track and a neighborhood distance to search. These parameters may affect the 

processing speed of the algorithm. To make it suitable for real-time applications, we 

chose 1 00 track points and block size 5 .  The proposed optical-flow algorithm has two 

main parts: Initialization track points and Tracking. 

4.6.7.2 Initialization track points 

Normally,  for initializing the optical-flow algorithm and setting the track points, a set 

of small segments that have intensity different than neighborhood segments are 

chosen. Based on this  approach most of the track points will belong to the edges in 

the image. Our observations show that using this approach for tracking skin segments 

83  



Chapter 4. Adaptive skin detection 

produces poor results. Because of smooth intensity changes of the skin color of the 

face, most of track points that belong to skin are located around eyes, nose and 

mouth, and the number of track points belonging to the skin segments of the face is 

very small (Figure 4. 1 2). 

To improve the results, we initialized the track points on the skin segments (based on 

global skin detector) with equal distances (Figure 4. 1 3  ) .  This method has two 

advantages for this application. First of all, we will have a reasonable number of track 

points on the region of interest, which is the skin color here . Secondly, by tracking 

motion, we can find bigger parts of skin segments . 

Figure 4.12. Track points based on traditional approach (good features to track). 

Figure 4.13. Initializing track points, based on primary skin color filter and equal distances. 
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Figure 4.14. Tracking skin color segments using LK optical -flow motion tracking and 
selected features to track. 

4.6. 7.3 Tracking 

In the initialization section, we put the track points on those regtons that are 

potentially skin. Therefore, recognizing motion in these points reveals user's  skin 

segments with a higher probability. In Figure 4. 14, darker points have been 

recognized as moving skin segments. The small lines connected to these points, 

represents direction of the movement. 

Figure 4. 1 5  represents the in-motion skin detected by the optical-flow tracking 

method. 

Figure 4.15. Nodding head: (a) Original image, (b) In-motion pixels of the frame, filtered 
using Global Skin Detector (c) Mapping the result to the original image. 
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4.6.7.4 Optical-flow vs. frame subtraction 

The results of this comparison are presented in Figure 4.2 1 .  The average correct 

detection using optical-flow shows about 20% decrease against frame-subtraction. 

The average false detection of frame-subtraction is slightly better than optical-flow. 

The performance of the frame subtraction is slightly better than optical-flow and the 

unreliability rate (UR) is significantly better for frame subtraction. The comparison 

shows that optical flow motion tracking, as a measure of motion, is not as good as 

frame-subtraction for this particular algorithm and application. 

4.7 Chapter summary 

In this chapter, we introduced the adaptive skin detection algorithm. This algorithm 

has two main components: i) the static skin detection which is a skin detection 

method based on the hue factor of the skin color, and ii) the adaptive skin detector 

which retrains itself based on new data gathered from movement of the user. 

This algorithm was designed for human-computer interaction applications. While the 

user is  interacting with the computer, the system captures the movements and retrains 

itself based on the user' s skin col or. The application is robust against environmental 

noise like lighting condition, noise caused by fluorescent lights, changes in intensity 

level caused by automatic gain control in digital cameras, and background noise. The 

performance of the system is less than 20 milliseconds per frame, on a P4 2 .2GHz 

PC, for a 24bit RGB image size 640x480 with non-optimized C++ code (Figure 

4. 16) .  
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Figure 4.16. A short video sequence presenting the behavior of the adaptive skin detection 
algorithm over time. On the top-right corner of each image, the detected silhouette of the 
skin is presented. The falsely detected areas were graduaUy eliminated over time 16• 

16 Videos are available in the enclosed CD. Also available online at: www.massey.ac.nzl-fdadgost and ngits.massey.ac.nz 
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Chapter 5. A novel approach for 

robust tracking, based on the 

Mean-shift algorithm 

5 . 1 Introduction 

Vision-based gesture recognition systems reqmre identifying and tracking the 

boundaries of the skin segments which in the case of this study specifically be hand 

and face. Calor information provides an efficient feature for this purpose because of 

its robustness to partial occlusion, geometry invariance and computational efficiency. 

The output of the skin detection algorithms on the other hand is a disperse set of 

detected skin pixels. The quality of the detection is dependent on several parameters 

including the background noise and lighting condition. These parameters may in 

some applications not be controllable. Considering that providing the ideal conditions 

for a real-world application is impractical , improving the quality of the output using 

enhancements techniques is considered a desired solution in skin detection systems. 

These techniques may themselves require considerable amounts of computation. 

Moreover, as we showed in the previous chapter, even using simple morphological 

operations (e .g.  Erode-Dilate) will not fully eliminate the sparse falsely detected 

pixels. 
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Chapter 5. A novel approach for robust tracking . . .  

Using a tracking algorithm which does not require a rigid segment and can handle 

ambiguous boundaries is another approach for tracking a disperse set of points. In thi s  

chapter, we  introduce the Mean-shift algorithm and its application in  hand and face 

tracking by tracking the disperse set of detected skin pixels detected by the skin 

detection algorithm. Among the different tracking algorithms, the Mean-shift tracking 

algorithm has recently become popular due to its simplicity and robustness. The 

Mean-shift algorithm is a nonparametric statistical method for seeking the nearest 

mode of a point sample distribution. 

The Mean-shift algorithm and its applications in pattern recognition was originally 

introduced by Fukunaga and Hostetler [ 1 36] in 1 975 for data clustering. They 

referred to their algorithm as a "valley-seeking procedure". The first reported 

application of the Mean-shift algorithm in image processing is probably the one 

introduced by Cheng [ 1 37] in 1 995 for mode seeking and clustering. Following some 

successful applications including Cheng' s  work, the Mean-shift algorithm attracted 

the interest of the image processing community in different application areas 

including feature tracking. 

5.1.1 The Mean-shift algorithm 

The basic idea of object tracking using the Means-shift algorithm is finding the 

highest density of features within the image using a search window. The search 

window has been called the "kernel" by some in the literature, and we will use the 

same term throughout this thesis. The modeling of features and the feature space, is  

an implementation issue, and may vary based on the target application. Particularly 

94 



Chapter 5. A novel approach for robust tracking . . .  

for object tracking, this function can be the value of a measurement function 

evaluating the feature within the kernel.  This value is also called the density of the 

kernel . The initial placement of the kernel is based on a placement strategy. 

The Mean-shift algorithm is an iterative algorithm. In each iteration, the kernel moves 

to a place where its center of gravity matches its geometrical center. The iterations 

continue while the kernel value is increasing. Figure 5 . 1  presents the iterations that 

took place to find the kernel with the highest density . The detailed description of the 

Mean-shift algorithm for blob tracking is introduced in section 5 . 1 .2 .  

Figure 5.1.  Iterations, to find the highest dense kernel using the Mean-shift algorithm. The 
initial position of the kernel is [1] which has a small overlap with the face blob. 2, 3, 4, 5, are 
the new positions of the kernel to match the center of gravity of the kernel to the geometrical 
center of the kernel. 

5.1.2 Automatic resizing of the kernel 

Choosing the proper size and the initial placement of the kernel are other problems 

which are not yet addressed in the literature and have remain as open research 

questions .  Random placement and max-fit placement of the kernel are two possible 
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strategies for placement of the kernel which may be superior to one another in terms 

of required amount of computation and specifications of the application. 

Improper initial placement of the kernel may result in finding a background object 

instead of the object of interest. The kernel size, on the other hand is a crucial 

parameter in the performance of the Mean-shift algorithm. If the kernel size is chosen 

too large, it will contain too many background pixels. Kernels that are too small not 

only determine an incorrect position for the object of interest, but may also "roam" 

around on the object in a video sequence leading to poor object location (Figure 5 .2). 

Changing the size of the kernel may also be necessary to cope with changes in the 

shape of the tracked object (e.g. rotation, moving toward or away from the camera). 

Figure 5.2. Choosing the size and initial placement of the kernel. (a) incorrect placement of 
the kernel, (b) choosing a kernel that is too large, (c) choosing a too small kernel. 

The general approach to single object tracking using the Mean-shift algorithm is 

referred to as the "Continuously Adaptive Mean-shift" or the CAM-Shift algorithm. It 

was introduced by Bradski [ 1 1 0] in 1998. This is  one of the earliest works in using 
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the Mean-shift algorithm i n  object tracking. The CAM-Shift tracking algorithm which 

adapts the size of the search window to the object using the knowledge of the aspect-

ratio of the desired object and the zeroth moment of the kernel is as follows 

(Algorithm 5 . 1 ) .  

Let M(p) represents the degree of membership of pixel p to the target object. Then for 

a kernel in quantized 2D space the coordinates of the centre of gravity are calculated 

as follows: 

M00 = LLM(x, y) (5.1) 
y X 

M01 = .L 2:X ·  M(x, y) (5.2) 
y X 

M10 = 2: 2 > ·  M(x, y) (5.3) 
y X 

Xc=MoiiMoo (5.4) 

Yc=MiofMoo (5.5) 

M00, M01 and M10 are called the zeroth moment, the first moment-x and the first 

moment-y respectively. 

�gorithm CAM-ShiftTracker ( )  

Begin 

Kernel = Initiali zeKernel ( ) ; 

For each frame Imagei 
Features = ExtractOb j ectFeatures (  Imagei ) ;  

Repeat [Moo , Mo1 , M1o ] = ComputeMoments ( Kernel ,  Features ) ; 

Cw = Centre of ( Kernel ) ; 

Cq = (Mo,/Mo;;-; M,o/Moo) ; 
ShiftWindow ( Kernel , Cq - Cw ) ; 

SetKernelSize ( Kernel , w (Moo) , h (Moo) ) ; 
Until I Cq - Cw l <= e ;  

End For 
End 

Algorithm 5.1. The CAM-Shift algorithm. 
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5 .2 Research Background 

Comaniciu, Ramesh and Meer [ 1 38] in their survey on "Kernel-based Object 

Tracking", have indicated two major components in visual object tracking. Target 

Representation and Localization. Target representation is normally a bottom-up 

process which has to cope with changes in the appearance of the target. Filtering and 

Data Localization is mostly a top-down process dealing with the dynamics of the 

tracked object, learning of scene priors, and evaluation of different hypotheses. The 

way the two components are combined and weighted is application dependent and 

plays a decisive role in the robustness and efficiency of the tracker. Some of the 

applications of the Mean-shift algorithm as a general tool for analyzing the feature 

space are introduced in Comaniciu [ 1 39] . Another successful application of the 

Mean-shift algorithm is object tracking with the core idea of representing the object 

as a set of features which may be varying in terms of number, distance and time 

[ 1 40] . This assumption is realistic in real-world applications of video analysis 

because a 100% accuracy in detecting features is not reachable. 

Comaniciu [ 1 4 1 ]  used the Mean-shift algorithm for object tracking with a moving 

camera. This meant that the feature extraction of the object is more difficult because 

of the changing of the background, but the basic idea of the tracking is the same as 

Bradski ' s  [ 1 1 0] work. Alien [ 142] used the CAM-Shift algorithm for tracking of 

multiple color patches. Wang, Chen and Huang [ 1 43]  used the features extracted from 

the wavelet to track the object. 
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5.2.1 The Mean-shift algorithm and feature tracking 

In general, the Mean-shift algorithm can be applied as a feature tracking algorithm for 

video sequences. One of the features of this approach is continuous evaluation of the 

kernel which can be done using a distance evaluation function. Different distance 

functions have been introduced and applied in research. Depending on the features 

and the target application, one may be superior to the other. These functions may 

require a significant amount of computation. 

For color-based object tracking also different similarity measurements have been 

introduced in the literature . The Euclidean distance, Mahalanobis distance [ 1 10] ,  the 

Bhattacharayya coefficient [ 1 44] and the Kullback-Liebler divergence are the most 

typically  used similarity measurements. 

Yang et al . [ 1 45]  proposed a new similarity measurement for object tracking using the 

Mean-shift algorithm. They have shown that Bhattacharayya coefficient and 

Kullback-Liebler divergence are inaccurate in higher dimensions on Gaussian 

synthesized data. Alternatively they proposed another similarity measurement for two 

Gaussian distributions which is more accurate and reliable in higher dimensions. 

Instead of evaluating the information-theoretic measures from the estimated PDF 

(probability density function), they defined the similarity between two distributions as 

the expectation of the density estimates over the model or target image. Given two 

distributions with samples lx = [x;, u;}. i = l . .N, and ly = [y1, v1}, j = l .. M, where the 

center of sample points in the model is x, and the current centre of the target points is 

y, the similarity between lx, ly in the joint feature-spatial space is as follows: 
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(5.6) 

k(x) is a RBF (Radial Basis Function) kernel function, and w, h are descriptors of the 

size of the kernel . They have shown that their approach for tracking of objects with 

known size performs better than Bhattacharayya coefficient and Kullback-Liebler 

divergence distance measurements. 

Xu et al . [ 146] proposed a color-based object tracking method using the Mean-shift 

algorithm based on a user selected window in the initial frame which should contain 

the object of interest. They used the Bhattacharayya coefficient as the convergence 

measurement of the Mean-shift algorithm. Their color model is a bitwise method for 

YUV 32 bit color space which contains 32 color clusters. To tolerate initial incorrect 

manual selections, they have used the Epanichnekiv kernel smoothing function to 

give higher value to the pixels located in the centre of the selected area and lower 

value to the pixels of the background that may be located on the edges of the selected 

area. However, they have not shown that their color model is better than other color 

models. 

Finally the Yang et al . [ 145] approach introduced the size and shape of the kernel as 

one of the features. This is in fact not suitable for some movement directions e.g.  

moving toward or away from the camera, which result a significant change in size, or 

for tracking an articulate object like hand where the shape is changing over time. 

These shortcomings make this approach not suitable for hand tracking and gesture 

recognition. 

100 



Chapter 5. A novel approach for robust tracking . . .  

Using a higher number of dimensions which i s  the result of using different features at 

the same time for tracking is  one of the current requirements of tracking. Research 

shows that more feature dimensions results in more accurate classification [39] . For 

instance, considering motions features, wavelets and color, together may improve the 

tracking accuracy. On the other hand, the feature selection itself and the amount of 

computation are the disadvantages of multiple feature space. 

5.2.2 The Mean-shift algorithm and variable sized kernel 

Choosing the size of the kernel is one of the challenges with the Mean-shift 

algorithm. As mentioned in Section 5 . 1 .2, kernel resizing in the CAM-shift algorithm 

is based on the density of the features within the kernel and the known aspect-ratio of 

the object. This approach is not robust, and therefore alternative methods are still 

being studied. 

Setting the kernel size m the CAM-Shift algorithm [ 1 1 0] is based on several 

assumptions: i) the quality of the detection together with the solid shape of the object 

of interest provides a certain density of the pixels within the kernel, ii) the aspect ratio 

of the size of the object of interest (e .g. face) is always constant, and iii) the face 

silhouette is the only silhouette in the image. Based on these assumptions, Bradski 

has proposed the following equation for calculating the kernel size in each frame: 

w=2��0� (5.7) 

h = 1 .2 x  w (5.8) 
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where w and h are the width and the height of the new kernel and Moo i s  the zeroth 

moment of the kernel. We refer to this method as the "kernel density-based'' method 

or for the sake of simplicity, sqrt(mOO), because the kernel size is based on the square 

root of the kernel density. Sherrah and Gong [ 147] proposed a similar method for 

tracking discontinuous motion of multiple occluding body parts of an individual from 

a single 2D view. They used the following width and height for estimating the kernel 

size for face tracking which is basically the same as Bradski ' s approach: 

w = � nkin (5.9) 

h = 1 .2 X W (5.10) 

where n is the number of non-zero pixels inside the kernel . 

The resizing method of the kernel in Comaniciu, Ramesh and Meer [ 1 4 1 ]  is based on 

measuring the kernel density by three different kernels simultaneously applied on the 

image. The three kernels consist of one kernel with the current size and the other two 

with window sizes of plus and minus 10  percent of the current size. For each, the 

color distribution of the kernel is compared to the color distribution of the target using 

the Bhattacharayya coefficient and the most similar distribution is chosen as the new 

current scale. One of the disadvantages of the Bhattacharayya coefficient is that in a 

uniformly colored region, any location of a window that is too small will yield the 

same value of the window as would be obtained by shrinking the window even more 

[ 148] . Therefore, decision making about shrinking or enlarging the kernel is  

impossible. 
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KaewTraKulPong and Bowden [76] proposed a method for tracking low-resolution 

moving objects in an image using color, shape and motion information. The height 

and width of the kernel were modeled by a white noise velocity model based on the 

assumption that the bounding box does not change dramatically. It should be noted 

that this assumption cannot be made in some applications including face tracking in 

HCI. 

Yang, Duraiswami and Davis [ 1 45]  proposed using Gaussian transform to model the 

kernel to decrease the number of iterations in the Mean-shift algorithm for tracking a 

moving blob. This enhancement requires some extra computation for pre-processing 

which degrades the overall performance of the algorithm. Collins [ 148] points out 

that setting the window size based on the CAM-Shift algorithm with negative weights 

does not produce a reliable estimation of the object boundaries. Alternatively he 

proposes a method for resizing the search window based on the weight of the samples 

and the scale of the Mean-shift kernel. The scale space is generated by convolving a 

filter bank of spatial Difference Of Gaussian (DOG) filters with a sample weight 

image. The results are then convolved with an Epanichikov kernel in the scale 

dimension. Although this method produces more reliable results for a wider range of 

applications, the computational expense of calculating convolutions is very high. This 

makes the approach unfavorable for real-time applications. 

Shan et al . [ 149] proposed a method for skin tracking using the Mean-shift algorithm 

based on particle filtering called the Mean-shift Embedded Particle Filter (MSEPF). 

They have introduced the in-motion skin pixels as an extra weigh for the tracking 
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usmg the Mean-shift algorithm. Introducing the motion feature as another weight 

factor makes the tracking algorithm more sensitive to moving hand or face. On the 

other hand due to the motion tracking method the detected centre of gravity may be 

varying after applying the Mean-shift algorithm. For instance, using frame 

subtraction, the in-motion pixels are mostly located on the edges of the hand and face. 

This makes the tracked rectangle to move biased to the edges of the hand silhouette. 

They have reported that this algorithm is being used for giving simple hand 

commands to an intelligent wheelchair as visual input. 

5 . 3  Fuzzy-based kernel resizing 

Our observations show that selecting a large kernel size equal to the input image 

together with resizing it with a proper algorithm can find the biggest blob in the 

image which would normally be the face or the hand region in an HCI application. 

5.3. 1 Initialization and boundary detection of the kernel 

Based on the output of the skin color segmentation algorithm, we observed the 

fol lowing limitations of the skin detection: 

1 )  The quality of detection i s  not deterministic and may vary over time. 

2) The quality of detection may be inhomogeneous on the same blob. For 

instance the density of the detected pixels in the forehead area may be 

different from the density of the detected pixels in the chin area (Figure 5 .3) .  
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3)  The density o f  the falsely detected pixels for some colors (e.g. wood color) 

may be considerable in comparison to the density of the pixels of the object of 

interest and therefore cause incorrect tracking. 

4) The shape of the silhouette of the object of interest (e .g. hand) is non-

deterministic and therefore the size of the kernel cannot be interpreted using 

the zeroth moment information. 

5) The blob of the object of interest may be disconnected due to different 

lighting condition. 

Figure 5.3. Inhomogeneous detection of the skin pixels in the image. The density of the pixels 
are varying in the face area which makes the detection and tracking of the face blob more 
difficult. 

To overcome the limitations discussed, we used a kernel initially equal to the size of 

the input image and resized it based on the density of the edges of the kernel. The 

results of applying this method in different scenarios using Algorithm 5.2 were 

superior to the CAM-Shift algorithm. 
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Algorithm SkinBlobTracker ( )  
Begin 

Kernel = MaximumS i ze ( ) ; 

For each frame Imagei 

For each pixel Px,y  in Imagei 
If LowerSkinThreshold :S Hue ( Px,y) :S UpperSkinThreshold 

Feature [ x ,  y] 1 ;  
Else 

Feature [ x ,  y] = 0 ;  
End if 

End For 

For each D = boundary Bi of the Kernel 

If (D < 1 0 % )  then 
Shrink the kernel from boundary Bi 

Elseif (D > 1 5 % )  then 
Enlarge the kernel from boundary Bi 

End if 
End For 

Repeat 

[Moo , Mo1 ,  M10] = ComputeMoments ( Kernel , Features ) ; 

Cw = Centre of ( Kernel ) ; 
Cq = !Mo1/Mo;;-; M1o/Mool ; 
ShiftWindow ( Kernel ,  Cq - Cw ) ; 

Until I Cq - Cw l <= e ;  
End For 

End 

Algorithm 5.2. Blob tracker based on the Mean-shift algorithm and evaluating edges of the 
kernel. 

The primary comparisons of the proposed algorithm to the CAM-Shift algorithm 

show that in tracking of a single object both algorithms have advantages and 

disadvantages. The convergence speed of the CAM-Shift algorithm is faster than the 

proposed algorithm because the kernel size changes exponentially to the inner density 

of the kernel in comparison to the proposed algorithm in which the kernel size 

changes linearly .  To improve the convergence speed of the proposed algorithm we 

have proposed a fuzzy approach to resizing the kernel based on the edge density of 

the kernel which is described in the following section. 
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5.3.2 Fuzzy boundary detector 

The fuzzy function for resizing the kernel includes three functions as described in the 

following paragraphs.  

Fuzzifier: The fuzzifier, changes the input values to fuzzy values. We have 

considered 3 input fuzzy values. The boundaries of these values are based on the 

empirical results that we found by trial and error in face tracking using a Dragonfly 

digital camera in separate experiments. Empirical results show that the proposed 

number of levels is sufficient for face and hand tracking (Figure 5 .4). 

c <> Medium � 1  b .. :E !l. 
i 
3 li � 0 �-+--���4--,--�----�· 
..:;· 0% 5% 10% 15% 20% 100% 

Density 

Figure 5.4. Fuzzy values for the inputs of the fuzzy boundary detector 

Inference Engine. The inference procedure for the proposed fuzzy controller is 

presented in Table 1 .  We have considered three fuzzy values for changing the output 

as indicated in Figure 5 .5 .  The values -5 and 5 are arbitrary and determine the 

shrinking and enlarging speed of the algorithm. 

Table 5.1. Fuzzy controller for the fuzzy boundary detector 

Edge density (input) Resize Rate (output) 

Low Shrink 

Medium No Change 

High Enlarge 
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Figure 5.5. Fuzzy outputs for the fuzzy boundary detector 

Defuzzifier: For converting the fuzzy outputs to numerical values, the centre of 

gravity method was used. 

The algorithm for the Mean-shift face tracker with fuzzy boundary detection is as 

follows: 

Algorithm FuzzyBlobTracker ( )  
Begin 

Kernel = MaximumSize ( ) ; 

For each frame Imagei 

For each pixel Px,y in Imagei 
If LowerSkinThreshold � Hue (P.,y) � UpperSkinThreshold 

Feature [ x ,  y] 1 ;  
Else 

Feature [ x ,  y] 0 ;  
End For 

For each boundary Bi of the Kernel 
Delta = FuzzyBoundaryDecision (Bi) ; 
ChangeBoundarySize ( Kernel , Bi , Delta ) ; 

End For 

End 

Repeat 

[Moo ,  Mot , Mtol  = ComputeMoments ( Kernel , Features ) ; 

Cw = Centre of ( Kernel ) ; 

Cq = (Mo,/Mo;;-; M,o/Moo) ; 
ShiftWindow ( Kernel , Cq - Cw ) ; 

Until I Cq - Cw l <= E ; 

End For 

Algorithm 5.3. Fuzzy blob tracker based on the Mean-shift algorithm. 

5 .4 Experiments and Results 

In this section, we present the experiments and the results showing the behavior of 

our proposed algorithm in comparison to the CAM-Shift algorithm in noiseless and 
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noisy environment. The implementation of the CAM-Shift algorithm is  based on 

estimating the size of the kernel as a function of the zeroth moment as described in 

Bradski [ 1 1 0] and Sherrah [ 147] .  We call this method sqrt(mOO), and compare it to 

our method which we have called the "fuzzy method". We measured (a) the top-left 

corner position, (b) the position of the centre of gravity, (c) the area of the kernel and 

(d) the error in positioning the kernel ,  which collectively give an overview of the 

stability and correctness of the kernel . 

We also applied preset levels of white noise in each experiment. The noise might 

change the value of a skin pixel causing it to not appear as a skin pixel in the 

silhouette image. Seven levels of noise (0 to 30% in 5% steps) were tested on the 

input sequence and all of the experiment' s  parameters were measured in each 

experiment. The video sequences were recorded using a Dragonfly video camera 

equipped with a Sony CCD. Each frame was a 640x480 RGB color image recorded in 

15  fps. 

The noise was applied before skin color detection which means the number of 

missing skin pixels were increased by performing the Erode-Dilate morphological 

operators inside the skin detector. We believe this model is more realistic and more 

similar to the real world conditions. 

To compare the algorithms we used an ideal tracker as the ground-truth data for 

evaluation. The ideal tracker is a tracker which holds at least 10% of the filled pixels 

in each edge, and tracks the object from an ideal (no noise) skin detection algorithm. 

The ideal tracker finds this characteristic for the edges in each frame, which makes its 
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behavior more like the inner density based algorithm which has faster convergence 

speed. In addition, it makes it to be flexible in resizing and to match properly around 

the shape of the desired object. Results from four experiments are presented in the 

following sections1 7• 

5.4.1 Experiment 1 :  Detecting a blob with no movement 

The platform for the first experiment was a manually segmented face image used as 

the input video sequence. The purpose of using a fixed frame instead of a real video 

sequence of an in motion blob was to test the algorithms with ideal input. We also 

wanted to have the ability to control the noise level without having to deal with other 

variables such as camera noise and change in lighting condition. The results of 

tracking in a noiseless environment in both of the algorithms were almost the same 

(Figure 5 .6). 

Figure 5.6. Detected boundary by the two algorithms, surrounding a static image silhouette 

17  The video sequence is available online at http://www.massey.ac.nzl-fdadgost 
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5.4.1.1 Behavior of the kernel density-based algorithm in noisy environment 

By increasing the noise, the reliability of the sqrt(mOO) method decreased and it 

finally couldn ' t  properly specify the boundaries of the face. However, there is a 

logical explanation for this behavior. This method depends on the density of the 

kernel to specify the boundaries. Adding noise to the kernel causes a decrease in the 

density by a power of two, and therefore smaller width and height for the kernel are 

computed. By increasing the noise level, this method starts to loose the track more 

frequently (Figure 5 .7b). 

5.4.1 .2 Behavior of the fuzzy boundary detector algorithm in noisy 
environment 

The fuzzy boundary detection algorithm proposed here shows more robustness 

against white noise. After locating the approximate position of the object, it examines 

the density of the edge of the kernel instead of the inner density. This feature makes it 

more robust against change of the density inside the kernel .  In addition, the fuzzy 

behavior applied on this algorithm, makes resizing smoother and less sensitive to 

noise. With the highest noise level, the fuzzy-based approach demonstrates significant 

stability in comparison to the inner density algorithm. Figure 5 .7a shows the 

boundary detected by the fuzzy-based approach and the density based approach .  The 

position of the kernel using fuzzy-based approach was correct and stable in almost the 

whole period of tracking, while position of the kernel using the density-based 

approach was unstable. Figure 5 .7b shows the occurrence of the "roaming effect" for 

sqrt(mOO) while the fuzzy edge density method is  stable. 
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Figure 5.7. a) The correct detection determined by Edge density-fuzzy. The smaller rectangle 
is the result of kernel density-based - sqrt(mOO) - method. b) Behavior of the algorithms 
with a noise level of 1 5 % .  

In  the following experiments we present the behavior of  these algorithms in  different 

scenarios, like occluded blobs, changing shape and zoom effect. 

5.4.2 Experiment 2: Tracking the blob of a moving hand 

The second experiment was performed on the video sequence of a hand, 

demonstrating a grabbing gesture. The characteristic of this gesture is a continuous 

change of the shape, and fast movement of the position of the blob as shown in Figure 

5 .8 .  

Figure 5 .8b and c, present position of  the centre of gravity of  the trackers and the 

measured error, respectively .  Although both trackers are able to follow the object of 

interest, the tracker based on inner density shows fluctuating error in boundary 

detection, while the fuzzy tracker is more stable and more accurate in detection of 

boundaries. 
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Figure 5.8. Tracking the hand in a "grabbing" hand gesture with white noise 20%, a) 
Original image sequence, b) Centre of gravity, c) Error of displacement in comparison to an 
ideal tracker (Xc-Xc idea0· 

5.4.3 Experiment 3: Tracking an object moving away from the camera 

The third experiment was performed on the video sequence of a face, moving away 

from the camera. This experiment was designed to analyze the behavior of the 

tracking algorithm on determining the boundaries of an object continuously 

shrinking. Both the size and the centre of gravity of the kernel change during the 

sequence (Figure 5 .9) .  The roaming effect for the inner density tracker is observable 

in Figure 5 .9b & c, representing fluctuation of the tracker in tracking the object of 

interest. 
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Figure 5.9. Tracking the centre of gravity - zoom out with 25% white noise, a) Original 
image sequence, b) Xc centre of gravity, c) Area of the kernel, and d) Error of placement of 
the kernel in comparison to an ideal tracker (X-Xidea1). 

5.4.4 Experiment 4: Tracking a moving hand in occluded situation 

The forth experiment was a simple hand movement in presence of another hand, as 

shown in Figure 5 . 1 0. This video sequence has two main characteristics. Firstly the 

presence of the "other hand" causes occlusion for the tracking algorithm, especially 

while the hands overlap. The tracking algorithms cannot distinguish which one is the 

hand in front of the camera. Secondly, the movement is a rotation of the hand around 

the elbow, which causes the rectangular boundaries of the hand to change in time. 
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Figure 5.10. Moving hand, in occluded situation, a) the original image sequence, b) Xc of the 
centre of gravity in noise 20%,  d) Error in Xc of the kernel in comparison to an ideal tracker 
(X-X;deau· 

5.4.5 Accuracy of tracking 

Evaluating a general purpose tracker is not a straight forward procedure because the 

acceptable accuracy and error tolerance are dependent on the application. For 

instance, considering an acceptable error tolerance for the position of the kernel in 

experiment 3, the accuracy of the sqrt(MOO) dramatically decreases by limiting the 

error tolerance, while the fuzzy algorithm shows robustness against white noise and 

high accuracy as shown in Table 5 .2 .  
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Table 5.2. Comparison of accuracy of the algorithms 

Experiment 3 Accuracy 
Acceptable Sqrt(MOO) Fuzzy 

error (pixel) Noise 20% Noise 20% 
1 0.094 0.608 
2 0.123 0.992 
5 0.181 1 
1 0  0.246 1 
15 0.304 1 
20 0.405 1 
25 0.507 1 

Another distance measurement between two segments introduced by Gevers [ 1 1 3] is 

based the sum of distances of all of the points in one shape to another shape called the 

Mean-distance. 

We used the concept of the Mean-distance to evaluate the distance between an 

arbitrary tracker and an ideal tracker, as discussed in the following paragraphs.  

Let A denote an arbitrary shape in the 2D space in discrete Cartesian system, 

containing n points. Then the shape A can be defined as: 

(5.1 1) 

Then, the distance between an arbitrary vector x and shape A is defined as: 

d(x, A) = min [d(x, u)] (5.12) 

Now, using the definition of the distance between two points in the 2D Cartesian 

system, the distance between x and u, is defined as: 

(5.13) 

Finally the distance between two shapes A and B in 2D space is defined as: 

d(A, B) = Ld(u, B) + Ld(v, A) 
fleA VeB 

(5.14) 

1 1 6 



Chapter 5. A novel approach for robust tracking . . .  

Based o n  the definition and above equation, the distance between an inner point of a 

shape and the shape itself is zero. This means that the distance between a tracker and 

another which surrounds that tracker is zero as well. To penalize these cases, we used 

both of the distances as shown in the above equation. The result of the Mean-distance 

is  presented in Figure 5 . 1 1 . 
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Figure 5.11. The average Mean-distance between the trackers and the ideal tracker in noise 
level 0% to 30%. a) "Grabbing hand gesture dataset" (experiment 2) , b) "Face zoom out" 
dataset (experiment 3) , and c) "Occluded hands" dataset (experiment 4). 

5 . 5  Implementation issues for hand and face tracking 

Based on the proposed algorithm, we implemented an application for tracking 

multiple objects including face and hands. In the following sections we describe the 

details  of the implementation and demonstrate the results. 
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5.5.1 The multi-tracker implementation 

The Mean-shift tracker introduced in this chapter was designed for tracking a single 

object silhouette within the image (Figure 5 . 1 2). While for HCI applications, tracking 

the hands and face of the user is required, capability of tracking multiple silhouettes is 

an implementation challenge using this algorithm. 

Time = IS Sec 
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Time = 25 Sec Time = 30 Sec 

Figure 5.12. Face tracking using the proposed algorithm for skin detection, and the Mean­
shift algorithm for blob tracking18• 

Since running multiple instances of the same algorithm on the same silhouette will 

produce the same tracking result, a strategy for distinguishing the different instances 

should be considered. For this purpose, we implemented an algorithm for running 

multiple instances of the tracker algorithm. This implementation has two main 

components: a) tracker manager and b) tracker scheduler. 

The tracker manager scans the image and searches for the blocks containing a certain 

density of the skin pixels within the frame. For each block satisfying this constraint, it 

assigns a tracker to it. In the next stage the tracker scheduler runs the available 

instances of the tracker, and erases the content of the image silhouette after each 

individual tracker detected its boundaries. This strategy prevents the trackers to move 

to the detected area of each other. If the tracker scheduler recognized that a certain 

tracker does not carry a certain number of skin pixels, marks it for deletion in the next 

scan. 

18 Please refer to video#3 in the enclosed CD to view the full video 
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The result of running this algorithm on an image sequence is  presented i n  Figure 5 . 1 3 .  

In Figure 5 . 1 3,  the green rectangles represent the trackers which just initialized by the 

tracker manager, and the yellow rectangles represent those trackers which lasted more 

than one frame. As seen in Figure 5 . 1 3d, there is no tracker on some of the non-skin 

areas, as initially were. This is the effect of the adaptive skin algorithm described in 

Chapter 1 .  

Frame 1000 

Figure 5.13. Running multiple trackers on the image sequence of hand movement based on 
the algorithm described in Section 5.5.1.  
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5.5.2 Tracker-tracker implementation 

The result of the implementation in the previous section is a set of trackers, tracking 

the skin area. Although using a good quality silhouette there will be one tracker per 

visible object in the image, in some scenarios there will be more than one tracker per 

object. The silhouette of the hand palm with open fingers near the camera is one of 

those scenarios. To overcome this limitation, we implemented an extension of the 

introduced multi-tracker algorithm. This implementation is based on two sets of 

trackers. The first set consists of the trackers which track the blobs of the skin pixels. 

We call this set "the micro trackers". The second set is the trackers which track 

groups of trackers in the first set. We call this set "the macro trackers". The more 

precise membership function and definition are as follows: 

Let M = { M � ,  . . .  , Mn } represent the set of macro trackers, and m = {m� ,  . . .  ,mk } ,  

represent the set of micro trackers. Each macro tracker carries a collection of micro 

trackers as Mi = { mp I mp e m } ,  such that for each pair of macro trackers (i, j ) :  Mi n 

Algorithm TrackerOfTrackers ( )  

M = { } ,  m = {m1 ... m.,. }  
For each mi in m do 

Found : =  false 
For each Mj in M do 

If distance (mi , Mj )  < delta then 
Hj = Hj + {md 
Found . - true ; break 

End If 
End for each 
If not Found then 

End If 
End for each 

End Algorithm 

M = M + ( {md } 

Algorithm 5.4. Tracker of trackers algorithm. 
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The result of running this algorithm on an image sequence containing different hand 

movements is presented in Figure 5 . 14. 

Frame 650 Frame 720 

Figure 5.14. Robust hand and face tracking using the tracker-tracker algorithm on an image 
sequence of different bi-hand movements. 

5.5.3 Using depth information for hand and face tracking 

One of the limitations of the Mean-shift tracking algorithm together with the skin 

detection is occlusion handling. Because there is no significant information about the 
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boundaries of the hand and face i n  the skin blobs, using an extra cue to distinguish the 

boundaries of the hand and face may be useful . In this section we describe the 

technique of using the depth information together with the Mean-shift algorithm. The 

depth information is extractable using a stereo-vision system. 

A stereo-vision system can provide the depth information of the scene in terms of 

distance to the camera. This information can be used for enhancing the algorithms 

which we introduced in Chapters 3 and 4. 

The simplest configuration of a stereo-vision system is hi-camera. However, three or 

more cameras also may be used in a stereo-vision system. Stereo-vision can produce a 

dense disparity map which can be translated to the depth information map. The 

resultant disparity map should be smooth, detailed and continuous. Moreover, 

surfaces should produce a region of smooth disparity values with their boundaries 

precisely delineated while small surface elements should be detected as separately 

distinguished regions. Unfortunately, satisfying all of these requirements 

simultaneously is not achievable. Algorithms that can produce a smooth disparity 

map tend to miss the details and those that can produce a detailed map tend to be 

noisy. The depth maps obtained by hi-camera stereo systems are not very accurate 

and reliable. A higher number of cameras may gain better quality depth information 

[ 1 50] . 

While the luxury of stereo-machines with more than two cameras is not yet 

commonly available, the normal hi-camera stereo-vision systems are the most 

available choice. However, the depth estimation ability is somewhat limited. We used 
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a Bumblebee19  bi-camera stereo-vision system for applying the techniques proposed 

in this section. Connected to the fire-wire port, this camera is able to record two 

1 024x768 calor or gray scale images in 25 fps. The test platform was Windows XP 

and the programming platform was C++ in Visual Studio.Net 2003. Although the 

depth map obtained using this camera is not highly accurate (Figure 5 . 15) ,  it can 

provide an estimation of the distance of different objects to the camera which was 

sufficient for evaluation of our ideas. 

Figure 5.15. a) A sample image, b) the depth information of the sample image. The light area 
is the object closer to the camera, the black patches are of unknown depth. 

5.5.3.1 The depth information and the adaptive skin detection algorithm 

Let' s take a step back and review the concept of motion detection for our adaptive 

skin detection algorithm. In fact, one of the reasons for the motion detection is 

separating the user and the background. Considering the fact that in an HCI 

environment the user is closer to the camera than the background, the depth 

information can significantly improve the accuracy of background elimination from 

19 Bumblebee stereo-vision system is manufactured by PointGrey research labs. 
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the image. This idea can be implemented using depth thresholding. Figure 5 . 1 6b 

represents the eliminated background and the remaining foreground after applying the 

depth thresholding technique. 

Figure 5.16. Background elimination using the depth thresholding technique. 

The detected skin pixels within the separated foreground are more l ikely to be the 

actual skin color and therefore the adaptive skin detection algorithm will provide 

more accurate detection. Some of the unwanted areas like the surface of the table 

behind the user will also automatically be eliminated. 

5.5.3.2 The depth information and the Fuzzy Mean-shift blob tracker 

The depth information can be used for occlusion resolution in some scenarios. Figure 

5 . 1 7  presents two cases in  which the distance of the hand and face to the camera are 

different. Obviously, without the depth information the hand and face blobs in these 

images are being considered as one single blob. In this section, we describe how the 

depth information can be applied for enhancing the Fuzzy Mean-shift blob tracker 

algorithm for occlusion prevention. 
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Figure 5.17. Some of the scenarios in which depth information can be useful for occlusion 
resolution. 

Based on the idea of applying the depth information as an extra cue for blob tracking 

within the Mean-shift algorithm, we implemented another variant of the Fuzzy Mean-

shift algorithm.  The basics of this variant in Kernel shifting is similar to its ancestor. 

However the kernel management is slightly different. 

The kernel in this version of the algorithm in addition to the vertical and horizontal 

boundaries of the tracking blob also carries the minimum and the maximum depth of 

the points within. The shrinking and enlarging procedure on the boundaries of the 

kernel are based on the pixels with depths within ± 10% of the kernel ' s  min-max 

depth. The pixels which do not satisfy this constraint or their depth is unknown will 

be ignored. Therefore, blob trackers which are tracking blobs in different depth levels 

will not interfere with each other. Figure 5 . 1 8  represents the result of this algorithm 

on an image. We should note that without the depth information, the hand and the 

face blobs are considered as one connected blob. Using the depth information, the 

Mean-shift algorithm is able to stay around the blob which has the homogeneous 

depth. 
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Figure 5.18. Occlusion resolution using the depth information and the Mean-shift algorithm. 
The tracked blobs are displayed on the disparity image (right). 

5.6 Chapter summary 

In this chapter, we presented a new approach for boundary detection in blob tracking 

based on the Mean-shift algorithm. Our approach was based on continuous sampling 

of the boundaries of the kernel and changing the size of the kernel using our novel 

algorithm. We also showed that the proposed method is superior in terms of 

robustness and stability compared to the density-based tracking method known as the 

CAM-Shift algorithm. 

The robustness of our method against noise makes it a good candidate for use with 

cheap cameras and real-world vision-based HCI applications. This method is to be 

applied in conjunction with a fast pixel-based skin color segmentation algorithm as 

the level of noise and the quality of the skin detection are not deterministic. 
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Chapter 6. Modeling and 

recognition of gesture signals in 2D 
space 

6. 1 Introduction 

A gesture is defined as "the use of movements (especially of the hands) to 

communicate familiar or prearranged signals"20. McNeill [95] one of the pioneers in 

behavioral science and gesture meaning, defines the term gesture phrase as "the 

period of time between successive rests of the limbs". He categorized gestures into 

three types: metaphoric, iconic and deictic which were discussed in detail in Chapter 

3 .  Metaphoric gestures are more representational, but the concept they represent has 

no physical form; instead the form of the gesture comes from a common metaphor. 

An example is "the meeting went on and on" accompanied by a hand indicating 

rol ling motion [96] . Iconic gestures, on the other hand, can convey meaning out of the 

context. These gestures represent information about such things as object attributes, 

actions, and spatial relations. Finally deictic gestures, also called pointing gestures, 

highlight objects, events, and locations in the environment. Deictic gestures have no 

20 http://wordnet.princeton.edu 
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particular meaning on their own, and convey information solely by connecting a 

communicator to a context. 

A pointing gesture can be represented by the movement trajectory of hand or head 

within a certain period of time. The movement trajectory itself carries a large amount 

of information, including speed, direction, position and acceleration. A gesture 

recognition system in this context accepts the gesture information from some form of 

a data acquisition device and recognizes a specific gesture pattern within the data. 

From this point of view, gesture recognition requires analysis of a sequence of 

information over time, to detect a gesture signal . Although there are some techniques 

which are more suitable for pattern recognition in time series, there is no commonly 

accepted approach for gesture recognition. The methods and techniques for gesture 

recognition are still evolving together with introduction of new hardware and user 

requirements. Hence, gesture recognition which requires feature analysis of time 

series is still an ongoing research. 

In this context, adequate feature selection from gesture signal is an essential part of a 

gesture recognition system. Although a higher number of features and multiple cues, 

may result in a more accurate classifier for gesture recognition, a larger number of 

features to process makes a classifier more complex and also typically more 

computation intensive. Moreover, the data preparation for test and training could be 

an extensively hard and time consuming task. Therefore selecting a smaller set of 

features which are more descriptive is highly desirable. 
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In this chapter we have introduced a technique for modeling and representing gesture 

signals in 2D space. This technique is based on measuring the gradient of the 

movement trajectory in certain time distances, to represent the gesture signal . Using 

thi s  technique, each gesture signal is represented as a time series of gradient values. 

These features can be classified by applying a supervised learning method. 

6.2 Research background 

Dietterich [ 1 5 1 ]  asserted five different categories of methods for sequential 

supervised learning, 1 )  The sliding window method, 2) Recurrent sliding windows, 3) 

Hidden Markov Models (HMM) and related methods, 4) Conditional random fields, 

and 5) Graph transformer networks. Some of these methods have been successfully 

applied for specific applications such as hand written character recognition or 

automatic dictation correction. However, the advantages and disadvantages of these 

methods in gesture recognition are yet unknown. We presented a detailed research 

background on gesture recognition and HMM in Chapter 2. Here, in this section, our 

concentration is on feature selection from the gesture signal, and other gesture 

recognition techniques. 

6.2.1 Time series analysis 

Yang and Xu [ 1 ]  present a method for developing a gesture based system using a 

multi-dimensional HMM and model gesture as sequential symbols. They have 

reported 99.7% accuracy in a prototype for recognition of hand written digits from 1 

to 9 .  They have applied short time Fourier transform (STFT) for feature selection 

from the input [x, y] coordinates of the gesture movement. 
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Watnabe and Yachida [ 1 52, 1 53] proposed a method of gesture recognition from 

image sequences. The input image is segmented using maskable templates and then 

gesture space is constituted by Karhunen-Loeve (KL) expansion using the segment. 

They applied Eigen vector-based matching for gesture detection. Mantyla et al. [ 1 54] 

show that using acceleration sensors in a mobile device, some useful information for 

detecting static and dynamic gestures are extractable. They used an HMM for 

dynamic gesture detection and the self-organizing mapping scheme of Kohonen for 

static gesture detection. 

Oka, Satio and Kioke [77, 78] proposed a gesture recognition based on measured 

finger trajectories for an augmented desk interface system. They used Kalman-Filter 

for predicting the location of multiple fingertips and HMM for gesture detection. 

They have reported average accuracy of 99.2% for single finger gestures produced by 

one person. Ogawara et al . [ 1 55]  proposed a method of constructing a human task 

model by attention point (AP) analysis. Attention points relate and integrate multiple 

observations and construct a locally enhanced task model of human demonstration. 

Their AP analysis system consists of two steps. In the first step, action segments and 

APs are extracted. Then in the second step, by closely examining human 

demonstration only around APs, the system extracts the attribute values and improves 

the model. Their target application was gesture recognition for human-robot 

interaction. 

New et al . [ 1 56] proposed a gesture recognition system for hand tracking and 

detecting the number of fingers being held up to control an external device, based on 
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hand-shape template matching. Perrin et al . [ 1 57] described a finger tracking gesture 

recognition system based on a laser tracking mechanism which can be used in hand­

held devices. They have used HMM for their gesture recognition system with an 

accuracy of 95% for 5 gesture symbols at a distance of 30cm to their device. 

Because of the difficulty of data collection for training an HMM for temporal gesture 

recognition, the vocabularies are very limited. Furthermore, to reach to an acceptable 

accuracy, a great amount of data is required for training and a lot of time should be 

spent to estimate the parameters of HMM. Hence, some researchers have suggested to 

use a better approach for more complex systems [ 157] . However, this is still an open 

research issue. 

6.2.2 Gesture identification through pattern recognition 

The approaches to gesture recognition are not limited to gesture modeling as time 

series. Other approaches based on static pattern recognition such as Neural Networks 

and template matching are also being used for gesture-signal recognition. 

Darrell and Pentland [ 1 58]  in one of the first papers on detecting gestures through 

space-time, described their system for matching gesture templates rather than the 

feature sets. In this context, a gesture pattern is described as a set of views observed 

over time. Since each view is characterized by the outputs of the view models used in 

tracking, a gesture can be modeled as a set of model outputs. This sequence of model 

outputs is also referred to as a gesture signal . To match the gesture signals they have 

applied a signal-template which is determined by the training data and DTW 
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(dynamic time warping) to resize the input samples to the normalized size of the 

gesture signal. 

Zho, Ren, Xu and Lin [84] described a method for developing a real-time gesture 

controller which includes visual modeling, analysis, and recognition of continuous 

dynamic hand gestures. They used visual spatio-temporal features of gesture and 

DTW technique to match the gesture signals. For detecting each gesture, they have 

used a gesture template created from the min-max values of the training gesture 

signals. They have reported an average accuracy of 89.6% for 1 2  simple hand 

gestures. 

Eisenstein, Ghandeharizadeh and Golubchik [ 1 59, 1 60] proposed a multi-layered 

framework for hand posture recognition. The lowest layer is hardware dependent, and 

the higher level layers are built on top of the lowest layer and are independent of the 

physical device. The lowest layer accepts a continuous stream of the raw data from 

the sensors on a glove input device. The second layer contains a set of predicates that 

describe hand postures. They have considered 22 hand postures in their models, to 

address the ASL alphabet which is the intended application. The third layer contains a 

set of templates, each which corresponds to a whole hand gesture. This layer is 

basically the description of a sequence of hand postures which form a simple hand 

gesture . They have defined a gesture as "A description of the changing posture and 

position of the hand over time". Finally, a letter of the alphabet is made from a set of 

hand gestures which were defined in the previous level . To detect hand postures from 

the input sensors, they have used thirty-seven neural networks using each network for 
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a postural predicate. For each hand posture, output of a set of 4 to 10 sensors are fed 

to the neural net. To match the posture sequence to the gesture templates, they have 

used the Euclidean distance between the ANNs' output set and each template. The 

best match is chosen as the recognized template. They have reported that their 

approach achieved an average accuracy of 72.9% for ASL letters considering the 

context, and 62.2% without considering the context. They have used a 22 sensor 

CyberGlove. They have also tested their approach using lower number of sensors. 

Based on their report a smaller number of sensors dramatically decreases the accuracy 

of the gesture detector. 

One of the difficulties in modeling of gesture signals is handling the variable length 

data which is not suitable for this category of classifiers. For instance, features such 

as speed, position or acceleration of a "circle drawing gesture signal" could be highly 

variable from one person to another. This makes applying some of the techniques like 

template matching and ANN even more difficult. 

Applying a resizing technique for different input sizes such as DTW is one of the 

possible solutions. However, these techniques can be applied only for known 

boundaries of input signals. This limitation dictates that the user explicitly indicate 

"when" s/he has started and finished a gesture signal. Although satisfying this 

constraint for some applications like a digital pen or mouse is quite easy, for some 

others like vision-based gesture signal recognition it is difficult. This is because there 

is no alternative signal (such as mouse click or touching a surface) to specify the start 

and the end of the signal . 
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6.3  The gesture trajectory recognition technique 

In the previous section the research background on gesture recognition system was 

presented. In this section, we describe our gesture recognition technique which is 

meant to be used as a component of a gesture-based user interface.  The input to this 

component is the movement trajectory information of the gesture signal. The 

assumption is that the movement trajectory is captured by an intermediate device and 

presented to the system. Particularly for vision based hand tracking, the trajectory of 

the hand is provided by the vision-based hand tracker which can virtually be any 

method of tracking. The method for skin blobs tracking which we introduced in the 

previous chapter is one of the possible inputs. The gesture signal recognition can be 

represented as a classification problem in the feature space. This approach typically 

has two major components : Feature selection and classification. 

6.3.1 Feature selection 

Feature selection can be a challenging task. The number of the selected features 

should be as small as possible to be efficiently used by a classifier. There are also 

other issues such as sensitivity to input noise which may be caused by vibrations of 

the hand, small rotation and scale which may vary from person to person or with 

different input devices. 

The movement trajectory of each gesture signal in two dimensional space can be 

represented as a set of (x�> y1) coordinates over time. Therefore, a gesture trajectory 

signal can be defined as a set of lines connecting the two sequential coordinates. 
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Although this representation makes the reconstruction of the input accurate, it is not 

invariant to position which makes it not suitable for a general gesture recognizer. 

There are other alternatives for representing the shape of a gesture signal . The gesture 

signal can also be represented as a set of angles over time. The value of the angle 

sequence can be extracted directly from the set of coordinates using the gradient of 

the motion trajectory over time as represented in the following formula. 

(6.1) 

• where Gm is a gesture signal recorded between time steps 0 to m. 

• a1 is the angle at time step t 

• (xr. y1) represents the coordinate of the gesture movement trajectory at time-step 

t. 

To reduce the effect of vibration and also having a smaller number of feature-values, 

the calculated angle is quantized to values of 1 0°. Thus, each sample after 

quantization will have a value between 0 to 35 (Figure 6. 1 a). Hence, the input 

gestures can be described as a finite set of integer values. 

8 
13 , , - -

, 
I • • •  

' ' . . .  \ 2  

17' ... -��� 
I 

\ 
\ 

0 
1 

s 
(a) 

(b) 

17 

� 
� 

(c) 

Figure 6.1. a) Quantized input vectors, b) Gesture vector (0, 13, 0), c) Gesture vector (17, 31, 
17) 
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The advantage of this representation is its invariance to translation. Using this model, 

a gesture like Figure 6. 1 b will be different from Figure 6. 1c ,  and the data, implicitly 

includes the time and the direction of the movement trajectory . Figure 6.2a shows a 

simple hand movement. The density of the arrows in different parts of the movement 

represents the speed of the hand in those parts. A higher density of arrows represents 

slower movement. It is observed that the hand has vibrations in some parts and the 

number of samples (arrows) in Figure 6.2a is considerably more than Figure 6.2b, 

which is the quantized version of the original movement trajectory. With this 

approach, a gesture is translated to a gesture signal (Figure 6.2c), which reduces the 

gesture recognition problem to a signal matching problem. Figure 6.3 shows that the 

proposed modeling of the gesture is invariant against position variation. The 

interesting feature of this model is that it transforms rotation in gesture space to a 

vertical shift in the angle space. 

a) 
�==============� 

nme '''P (c) 

b) 
�==============� 

L_ ____________________ � (d) 

Figure 6.2. a) Original gesture trajectory, b) sampling from the gesture trajectory, c) gesture 
signal of the collected data over time, d) reconstructed gesture using [c]. 
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Figure 6.3. Left: Gesture signal, Right: gesture movement trajectories 

6.3.2 Gesture Classification 

After feature selection, introduced m the previous section, the next step is to 

implement a tool for recognition of a gesture signal. In this study, we applied a feed-

forward neural network for gesture classification. Applying this classifier requires a 

primary training step which we describe in detail in the following sections. Figure 6.4 

summarizes the steps involved in gesture recognition based on our technique. 

Obviously, the gesture set is application dependent. Hence, some factors like user' s 

physical and ergonomical limitations in employing gesture signals should be 

considered. 

-t 
iil :r 
s· 

(,Q 

Recording the Pre-processing Training the 
training data � the training data r--+ classifier Gesture 

recognition 

Figure 6.4. Gesture recognition based on input gesture signal to a classifier. 
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6.3.3 Recording the training data 

The data collection for training the classifier was done using the trajectory recoding 

software which we implemented for this purpose (Figure 6.5).  The program records 

the movements of a mouse cursor on the "Test canvas" and translates it to a gesture 

signal . The start and end of each signal is indicated by the user by clicking and 

releasing the left mouse button. Hence, input devices such as optical mouse, trackball 

or digital tablet, which can control the mouse cursor are useable together with this 

application. Finally, the recorded gesture signals were then stored in a file for further 

processing. 

l!:i Gesture recorder [Gesturc05.txt] GJ©Jrg) 

o 2 s a 10 1 2 1 •  16 18 20 22 24 26 28 30 n 
Time 'Step 

Figure 6.5. The gesture signal recording software. 
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6.3.4 Normalizing the data 

Although our modeling approach has the mentioned attractive features, because of the 

nature of the gesture which is the movement trajectory information, the number of 

samples may vary for each user or even at each time of the gesture input. The varying 

number of samples on the other hand is not suitable for classifiers. Most classifiers 

such as Neural-Networks, Support Vector Machines, and Eigen Vector Regression 

require a certain number of inputs which represents the number of dimensions in the 

feature space. Therefore, a pre-process is required to equate the size of the input data. 

Since the effects of the different normalization approaches using this technique are 

unknown, we designed a set of experiments to study the results of the different 

normalization techniques to find a realistic approach providing a reasonable accuracy.  

The details of the experiments and the results of their evaluation are drawn in the 

following sections. 

6.4 The experiments 

The training and evaluation platform of our gesture recognition technique was the 

Neural Network library of MatLab, Version 6.5, with sigmoid activation function for 

all neurons in all layers. 

6.4.1 The first experiment - Using one ANN 

In this step, we used a multi-layer feed forward neural-network with 28 inputs, two 

inner layers containing 20 and 9 neurons respectively, and three output neurons each 

representing the detection of one gesture signal. The outputs translated to yes/no, 

using a HardLirnit transform (Figure 6.6). 
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Inputs layer Output layer 
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en 
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Figure 6.6. The structure of the ANN for gesture classification 

The challenge of this model was the different size of the average vectors for each 

gesture. Instead of using the average size for the normal vector, we used a constant 

size of 28 (the maximum of the average size of the gesture classes) as the general 

vector size, and then applied the trimming/replication of the tail of the vector to set 

the training data size to 28. The results of the first experiment are presented in Table 

6. 1 .  Figure 6.7 presents the performance of the ANN in training within 4000 

iterations. 

Table 6.1. First experiment, detecting multiple gestures using a single ANN 

Gesture � _t\ � 
(1 ) (2) (3) 

Size of the training data 235 221 254 
Average size 31 29 23 
Size of the normal vector 28 28 28 
Size of the test data 1 26 1 13  96 
Accuracy of  the classifier for 100% 98.23% 97.917% 
each gesture 
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Figure 6.7. Performance of the ANN over time while training (Goal was 0). 

• Gesture detection from continuous input 

In this experiment, we also applied a continuous gesture signal to the trained ANN. 

The inputs of the ANN were initially set to 0 and each input angle was pushed to the 

input queue at the time of observation. The sequence of the three gestures was 

correctly detected. However, the boundaries of the gesture signal was not 

determinable because of the multiple detections of each gesture. 

- Gesture signal • Gesture 1 • delection • Gesture 2 • delection • Gesture 3 • delection 

40 
" 35 
Q. 
.!! 30 .. 
e 25 
f w  I 
� 1 5  " I  -5, 10  I 

� � ������������������·�������-������·¥�J 
6 1 1  16 21 26 31 36 41 46 51 56 61 66 71 76 

Time steps 

Figure 6.8. Continues gesture detection using one ANN 

6.4.2 The second experiment 

The promising results from applying this technique in the previous experiment 

encouraged us to apply this approach on a more comprehensive set of gesture signals 
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with more freedom in terms of the size of gesture signals. For this purpose, using the 

gesture recording software and a digital tablet, a total of 7392 gesture signals of 1 3  

gesture classes were recorded by three individuals (two males and one female). The 

detailed information of the recorded samples is presented in Table 6.2. 

In this experiment, we used one ANN for detecting each gesture with a constant input 

size of 45 (the maximum size) as the input vector to an ANN. The method of size 

adjustment in this prototype was based on padding the input vectors with random 

values. Hence, the test and the training data both carry two types of noise. The first 

one is what was recorded together with the user's input (e.g. vibrating hand). The 

second one is the random values which were added to the gesture signal. It is  

expected that by using this strategy, the ANN adjusted its weight such that the lower 

inputs to be less important in classification and at the same time to be able to classify 

the real input data robustly.  

To train the ANN, 80% of each gesture signal was used as positive samples. Another 

dataset equal to the size of the positive training data was used as the negative samples 

containing 50% other gesture signals and 50% random values. For evaluating the 

ANNs, we used the remaining 20% of the gesture signals as positive test data and a 

dataset with equal size containing 50% of other gesture signals and 50% of random 

signals as negative test data. 
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Table 6.2. The data recorded for the second experiment, using the gesture recorder and a 
digital tablet. 
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We used the collected training datasets for training 1 3  feed forward ANNs each 

representing one of the gesture signals. Each ANN had two inner layers of 45 and 30 

neurons respectively and one output. The result of this experiment is presented in 

Table 6.3 .  The output of the ANN was interpreted by a HardLimit transform. 

Considering that the reliability of applying the HardLimit transform may be in 

question, we analyzed the output values of the ANNs. The histogram in Figure 6.9 

shows that most of the output values are located at - 1  and + 1 thresholds. Therefore, 

shifting the threshold which is zero in the HardLimit transform causes the 

interpretation for a minority of the outputs to be changed. We evaluated the output 

values of the ANNs based on thresholds from -0.9 to +0.9 with step 0. 1 .  The effects 

of changing the threshold are presented in Figure 6.10. It is seen that by changing the 

threshold the correct and false detection ratio change together. The distance between 

the correct detection ratio and the false detection ratio at position zero is maximal . 

Therefore, the hard-limit transform is the best interpretation of the output. 

Table 6.3. The results concluded from the experiment 2 (one ANN for each gesture signal) 
r--------

Gesture 
No. 

1 .  
2. 
3. 
4. 

I 5. 
6. 
7. 
8. 
9. 
1 0. 
1 1 .  
1 2 .  
1 3 .  

Summary 

--- r-:;:::-Correctly 1 Total 
detected correct 

80 80 
1 1 0  1 1 2 
1 0 1  1 03 
96 1 03 
175  1 76 
1 76 1 82 
93 93 
82 84 
96 96 
89 90 
1 03 1 05 
1 05 1 05 
1 1 6  1 1 8 

,---;--Correct 
positive 

detection% 

1 00 
98.21 
98.06 
93.20 
99.43 
96.70 
1 00 

97.62 
1 00 

98.89 
98.09 
1 00 

98.30 
98.35 

---- :--r:=----------- r-;;;-;-· ·-----. 
Falsely 1 Total False positive 

False positive to 1 
detected I false detection% 

correct positive 1 
detection i 

23 402 5.72 0.0572 I 0 397 0 0 
35 397 8.81 I 0.0899 
29 401 7.23 0.0775 
1 5  i 602 2.49 · - -- ----o.6251 -- --
23 i 61 9 3.72 0.0384 
1 5  440 3.41 0.0341 
27 407 6.63 0.0679 
0 I 409 0 0 
1 3  4 17  3. 1 2  0.0315  
6 387 1 .55 0.01 58 
1 8  41 1 4.38 0.0438 
1 2  436 2.75 0.0280 

3.83 0.0392 I 
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Figure 6.9. The histogram of the output values of the ANNs for the test data. 

-- Correct detection ratio -- False detection ratio 

���=-�0.14 
1 \ 0.12 

� � � � � 0 u u u u 
Threshold 

0.1 0.08 0.06 0.04 0.02 
Figure 6.10. The effect of the change of the threshold on average correct detection ratio 
(middle vertical axis) and false detection ratio (right vertical axis). 

To analyze the accuracy of this method of classification more appropriately, the 

measured values are shown in a confusion matrix in Table 6.4. For this purpose, the 

entire test dataset was labeled from 1 to 14 representing the 1 3  gesture alphabet and 

randomly generated gesture signals. Each ANN was evaluated using this data and 

false positive detection of each gesture signal measured amongst other ANN gesture 

classifiers. Since the test dataset is not the same as used before (measurements in 

Table 6.3),  the values here in Table 6.4 are different. The values in the diagonal cells 

represent the accuracy of each ANN in classifying its peer gesture and other cells 
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represent the false positive detections of each ANN in dealing with non-peer gesture 

signals. 

Table 6.4. Analyzing the accuracy/inaccuracy of multiple ANNs for gesture classification 
using confusion matrix (all values are in percent). 

.. -,---· --�---· ·· ·-··· ·-
_ 1> _ _ _ 1 

G') G') G') G') G') G') G') G') G') G') G') G') G') 
"' "' "' "' "' "' "' "' "' 

"' .. 

!I! !I! !I! !I! !I! !I! !I! !I! !I! !I! � 
c c c c c c c c c c c 
� � � � ii! ii! � � � � ii! 
.... "' ... ... en "' .... "' U) .... .... 

I NN 0 .... 

N1 99.64 0.06 - 0.02 0.01 0.29 - 0.01 -

: N2 - 99.06 0.01 - 0.04 - - 0.03 
N3 - 0.87 97.5 - 0.08 1 .74 2.66 - 0.9 0.33 0.49 

1 N4 0.38 0.01 - 94.1 3  1 .61 0.01 0.01 1 .05 0.6 -

I N5 0.01 0.01 0.28 98.98 0.29 - 0.29 0.12 0.01 0.14 
I N6 - - 0.25 0.01 0.03 97.39 0.15 0.01 0.32 0.03 0.88 
! N7 0.04 0.51 0.99 - 0.01 0.1 99.65 - 0.01 0.29 -

I NB - 0.01 - 2.05 0.97 0.03 98.57 0.21 - 0.26 I 
N9 - - 0.04 - - 0.04 - 1 00 - 0.01 

: N10 0.04 1 .0 0.07 - 0.21 0.09 0.32 - - 98.61 0.01 
i N1 1 - - - 0.29 1 . 13 - - 0.06 - 98.08 
N12 - 0.25 - 0.07 1 .12 0.06 - 0.13 0.01 3.0 

1 _N1 3
_ 
._ 0.15 1 .1 6  0.17 0.83 - 0.25 0.32 0.07 0.03 

- - --- -- ------- -- - ---- --- --- L,__ -- -�- -L---

6.4.3 Comparing the ANN classifier with a SVM classifiers 

.. 

.. "' . � � � � c c ...a. fD S, � � • !!! o 
.... .... <g 3 
"' ... 

., 

1ii 
- - 3.16 
- - 0.33 

0.32 0.01 1 .59 
0.01 0.76 3.98 

- 0.35 0.87 
0.13 0.06 1 .71 

0.01 0.57 
0.01 1 . 1  2 . 16 

0.01 0.1 
0.01 0.01 1 .35 
0.46 0.31 
1 00 2.65 

98.27 0.82 
-- - - - -

It is an interesting question that whether or not other methods of classification would 

be superior to the ANN method for gesture signal classification. To answer this 

question we trained a support vector machine (SVM) using the same training data. 

The kernel we used in the SVM was a radial basis function (RFB) kernel based on the 

equation below, with u = 0.5 . 

(6.2) 

The results of the classification using the SVM on the test data is presented in Table 

6.5 .  Figure 6. 1 1  represents the result of the classification using SVMs on the test data 

in comparison to ANNs. 
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Table 6.5. The evaluation of a support vector machine in classifying the 13 gesture signals. 

I 1 3. 1 1 6 1 1 8  98.31 1 6  436 3.67 j 0.0373 
Summary 96.34 8. 1 4  I 0.0845 

o NN Correct Posti-.e • SVM Correct Positi-.e 
100% 

95% - - - - r-- r-- - t::- r---
90% - r-- r-- r-- r- - r-- - r-- 1-
85% - f- f- f- - ,_ f- 1- f- f-
80% 

1 2 3 4 5 6 7 8 9 10  1 1  12  1 3  
Gestu re no. 

o NN False Positi-.e • SVM False Positi-.e 
20.00% ,---------------------------1 
15.00% -l--------------11-------�----t 

2 3 4 5 6 7 8 9 10 1 1  12 13 
Ges ture n o .  

Figure 6.11.  The evaluation of a support vector machine in classifying the 13 gesture signals 
in comparison to the ANN classifiers. 

The average accuracy of the SVM classifier was 96.34% and 8 . 1 4% for correct 

positive and false positive detections, respectively. The high accuracy in correct-

detection makes the SVM classifier comparable to the feed forward ANN, however 
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the 8. 1 4% average false detection ratio makes the output of the SVM less reliable in 

comparison to ANN which was 3.83%. 

We should note that in this experiment the performance of the SVM in terms of the 

number of floating point multiplications and summations was better than ANN. 

However, this comparison can not be generalized, because the performance is 

dependent on the number of neurons in the ANN and the size of the support vector in 

the SVM. 

6.4.4 Gesture classification using one ANN with 14 outputs 

We also implemented the gesture classifier based on what was introduced in Section 

6.4.2 using a single ANN. This structure is preferable because of the following 

advantages. Firstly, the rnisclassification ratio is automatically decreased at the time 

of training and therefore the output would be more reliable . Secondly, in case of using 

the same number of hidden layers, the computation cost of a single recognizer would 

be less than 1 3  individual recognizers. 

Hence, a single feed forward ANN with 45 inputs and 14  outputs was designed for 

classification (Figure 6. 1 2) .  For training the ANN, each element of the training 

dataset was labeled by the relevant gesture numbers from 1 to 1 3  and random gesture 

signals also labeled to 14.  The results indicating the accuracy of the ANN for each 

gesture signal are presented in Table 6.6. 
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Figure 6.12. The structure of ANN for detecting multiple gesture signals. 

Table 6.6. The evaluation of a single ANN in classifying 14 gesture classes using 2 hidden 
layers. 

Gesture 
No. 

Correctly 
detected 

Total 
correct 

Correct 
positive 

detection% 

----------�� -------------, - - - -F"afse __ _ __ · :  

Falsely I Total False positive to 11 
detected false 

positive correct 
detection% positive 

detection 
1 .  164 1 65 99.39 6 2424 0.247 0.0024 

. 2. I 166 1 69 98.22 1 , 2420 0.041 0.0004 �=�-=:1=:=_ : ____ �5�-----�= =-1-�-==: =]_!�69-_=:=- -=·= --3-==· ·-··;--- 2436' - -- --- -0�1-23. -=t===�012 _ ____ � 1------t.--+--- ��� ----- � �: -j�--:::�-- -- - ---�--- --- --T-- -il�-- - - - - - - � ���j - -- r - - - - � :��ii- ---� 
[=-��l�-:�:-=-=: ��==-- --��--E_ - �HF ��-- 3====�J-=1;�r =-==��f�_-:-:=E� �����:=:=� 
l a. 159 166 · 95.78 _ _  --� _ _ 2423 o.o82 _ _  L .. o.ooo8 

· 

: 9. 156 100 0 0 ' 1 0 . 92.85 0.0013 
· - - ---- --- -

L._ 1 1 .  95.71 0 
- f 2 . - . -- 97.76 2410 0.165 0.0016 

1 3 . 95.14 2404 0.124 

96.02 0 . 1 44 

6.4.4.1 The optimum design for gesture classifier 

Choosing the right number of hidden layers is a critical factor in design and training 

an ANN classifier. Although a larger number of hidden layers may increase the 

accuracy of the ANN in training, it is not preferred due to some side effects. Firstly ,  

the number of hidden layers may be significantly effective in the required 

computation time to process the input which is important in the case of using a 

software-based ANN. Secondly, it may also cause the ANN to simply memorize the 

training data rather than identifying patterns in it. Therefore, choosing the optimum 

number of hidden layers is one of the design issues. 
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To identify the optimum number of hidden layers, we analyzed the ANN using 0 to 7 

hidden layers, each layer containing 45 neurons. Table 6.7 represents the evaluated 

and measured values from each ANN. From this result, it is concluded that 1 or more 

hidden layers are required to gain acceptable output accuracy. However, with more 

than 2 hidden layers the output accuracy would not significantly improve (Figure 

6. 1 3) .  

Table 6.  7. Comparison of the accuracy of a single ANN containing 0 to 7 hidden layers in 
recognizing the 14 gesture signal classes. 

Number of I Cor��ct False ' 

hidden pos1t1�e positive Epochs 
detection detection L passed 

_ -���� _J__�g� __ _jAvg �  __ 

0 J 26.83 0.05 66 

r --�- r 88. 1 1  _ 0.18 _ _  _j_ -42� 

� -- -: l- ::::� r--:::i----'- -�-9: 
4 1 96.69 o. 18 339 

Accuracy reached I 
(Goal was 0.0001 ) I - - ---- - 1  

- _0
�

3 -1 0.0536 - - --
0.0285 

!- - -

0.0199 
0.0157 

--
- '-··-·· 
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Figure 6.13. Comparison of correct positive and false positive recognition accuracy of a 
single ANN in gesture signal classification employing different numbers of hidden layers. 
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6.5 Implementation of the gesture tracking system 

6.5.1 System inputs 

The inputs to the system were provided by an implementation of the Fuzzy-based 

Mean-shift tracker as described in Chapter 5. The tracker, tracked the biggest skin 

blob present in the video sequence and translated its movement trajectory to a 

sequence of angles as required for the gesture recognition technique which was 

introduced in this chapter. 

Figure 6. 14 represents the movement trajectory of gesture number 6 and its gesture 

signal . The gesture signal is presented on right-top corner of each frame. Hence, the 

gesture signal can visually be matched to the known gesture signals. The movement 

trajectory was extracted from the centre of gravity of the hand blob as displayed in 

each frame.  The frame grabber was a Dragonfly digital camera ( 1 5  fps) . 
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Figure 6.14. Recording the hand movement trajectory using the Fuzzy-based Mean-shift 
tracker. The gesture movement trajectory signal is presented on the right-top corner of each 
frame. 

6.5.2 Gesture movement trajectory recognition 

The implementation was carried out using one ANN with 45 inputs, 14 outputs and 

two hidden layers each with 45 neurons. For this purpose, the ANN discussed in 

Section 6.4.4 was trained in Matlab. Then, the parameters of the ANN including 

weights and bias values were exported to a data file and used by a feed-forward ANN 

implementation in C++. The processing power which the ANN required to process its 

inputs was also measured. It was on average equal to 68 micro seconds on a PC with 
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a Pentium 4-2.8GHz processor. This also indicates that the ANN itself requires just 

0.2% of the CPU processing time which means it can be used in real-time. 

The inputs of the ANN were provided through an input buffer with size 45 containing 

the gesture ' s  movement trajectory signal . In each time-step the detected trajectory 

angle was pushed into the input buffer. Then, the input buffer was delivered to the 

ANN for processing and the outputs of the ANN were recorded for demonstration. 

Figure 6 . 1 5  presents the output of the described implementation. The diagram on the 

top-right corner of the image represents the gesture signal. The other diagram on the 

bottom-right corner of the image represents the history of detected gesture signals. 

The horizontal axis of this diagram is frame number and the vertical axis  is gesture 

number. Each marker against each gesture number indicates one positive detection of 

that gesture per frame. As it is observable in this figure, gestures number 5 and 14  

were detected. I t  is worth mentioning that detection of gesture number 14 has no 

particular meaning here, however, its presence indicates the existence of a noisy input 

signal. Figure 6. 1 6  presents the recognition of gestures number 9 and 1 3  using the 

visiori-based gesture recognition system introduced in this section2 1 . 

21 The original videos are available at: http://www.massey.ac.nzl-fdadgost/xview.php?page=videos 

1 54 



Chapter 6. Modelling and recognition of gesture signals in 2D space 

Figure 6.15. Implementation of the vision-based gesture recognition using one ANN and the 
Fuzzy-based Mean-shift tracker. The diagram on the right-bottom corner of the image 
represents the detected gestures over time22• 

Figure 6.16. Recognition of gesture signals number 13 and 9 using the vision-based gesture 
recognition system23• 

22 Please refer to video#9 in the enclosed CD to view the full video 
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6.6 Chapter summary 

In this chapter, we presented a novel approach for gesture recognition. This approach 

has two main steps: i )  gesture modeling, and ii) gesture recognition. For gesture 

recognition, we used a multi-layer feed-forward neural-network. The results of our 

first experiment show 99.72% average accuracy in gesture recognition. In the second 

experiment we used another ANN for gesture classification which shows 98.7 1 %  

average accuracy for gesture recognition. Based on the high accuracy of the gesture 

classification, the number of ANN layers seems to be enough for detecting a l imited 

number of gestures .  However, more accurate judgment requires the more number of 

gestures in the gesture-space to further validate this assertion. Our observation also 

shows that this technique is a potential approach for continuous gesture classification. 

Table 6.8 presents the accuracy of the proposed gesture recognition technique in 

comparison to other techniques introduced in the literature . 

The gesture recognition technique introduced in this chapter can be used with a 

variety of front-end input systems such as vision-based input, hand and eye tracking, 

digital tablet, mouse, and digital glove. We applied the Fuzzy-based Mean-shift 

tracker introduced in Chapter 5 as the front-end of this system. We also showed that 

gesture signals recorded using our vision-based hand tracker can be used as the input 

to the gesture recognition system. 

23 Please refer to videos # 10  & # l l in the enclosed CD to view the full video 
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Table 6.8. Comparison the accuracy of the proposed method with other gesture recognition 
systems in the literature. 

Underlying 
Accuracy 

Application I Description 
applied technique False Gesture alphabet 

Correct positive 
positive 

Movement trajectory detection HMM 97.5% - 99.2% NA Drawing three shapes 
[78) (circle, triangle, square) 

Mobile sign language recognition GT2K - HMM 52.38% (Vision-based) NA 40 words vocabulary in 
using [83) 65.87% (Accelerometer) a controlled environment 

Workshop activity recognition GT2K - HMM 93.33% NA 1 0  gestures 
[83) 

Movement analysis based on Spatia-temporal 89% NA 1 2  gestures 
intensity image sequence and a appearance in 
hand mask image sequence [84) 2D space 

Dynamic hand writing recognition HMM and STFT 99.7% NA 9 gestures 
[1 ) for feature 

selection 

Gesture controller [84) Gesture signal 89.6% NA 12 gestures 
matching and 
DTW 

Gesture movement trajectory Single ANN and 98.7 1 %  NA 3 gestures 
recognition (section 6.4. 1 ) angle space 

Gesture movement trajectory Multiple ANN 98.34% 3.83% 1 3  gestures 
recognition (section 6.4.2) and angle space 

Gesture movement trajectory SVM and angle 96.34% 8. 1 4% 1 3  gestures 
recognition (section 6.4.3) space 

Gesture movement trajectory Single ANN and 96.02% 0 . 14% 1 3  gestures 
recognition (section 6.4.4. 1 )  angle space 
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Chapter 7. Summary, conclusion 

and future research 

In this dissertation we presented the research pathway in design and implementation 

of a real-time vision-based gesture recognition system. This system was build based 

on three components, representing three layers of abstraction: i) detection of skin and 

localization of hand and face, ii) tracking multiple skin blobs in video sequences and 

finally iii) recognition of gesture movement trajectories. 

The adaptive skin detection, the first component, was described in Chapter 4. This 

component was implemented based on our novel adaptive skin detection algorithm 

for video sequences. This algorithm has two main sub-components : i) the static skin 

detection which is a skin detection method based on the hue factor of the skin color, 

and ii) the adaptive skin detector which retrains itself based on new data gathered 

from movement of the user. We evaluated this algorithm using two motion detection 

methods. 

The results based on both of these motion detection methods show that the algorithm 

can improve the quality of the skin detection within the video sequences. Specifically, 

the adaptive skin detector based on frame subtraction motion detector provides better 

results in terms of correct detection ratio. The effect of some of the morphological 

operators on this algorithm was also studied. The results shows Erode and Erode-
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Erode operators significantly reduce the number of falsely detected pixels. This 

means that a majority of the falsely detected pixels are sparse individual pixels which 

can easily be eliminated. 

The role of the next component is tracking hand and face in video sequences. For this 

purpose, as presented in Chapter 5 a new approach for boundary detection in blob 

tracking based on the Mean-shift algorithm was proposed. Our approach is based on 

continuous sampling of the bo�ndaries of the kernel and changing the size of the 

kernel using our novel Fuzzy-based algorithm. We compared our approach to the 

kernel density-based approach which is known as the CAM-Shift algorithm, in a set 

of different noise levels and conditions. 

We analyzed the proposed algorithm based on two main factors: correct boundary 

detection and stability against white noise. The results show that the proposed 

approach is superior in stability against white noise and provides correct boundary 

detection for arbitrary hand postures which is not achievable by the CAM-Shift 

algorithm. Based on the results, we conclude that our proposed method of boundary 

detection can be effective for fast and robust tracking of the face and hand. 

We also presented three variances of the proposed algorithm with the applications of 

hand and face tracking in HCI environments. The first variance addresses tracking of 

multiple skin blobs in the image sequence. The blobs in the context of HCI 

applications are the hand and hand face.  Considering the fact that the skin detection 

algorithms may provide disperse set of pixels with variable density over time, the 

second algorithm provides a high level of tracking which we called it "Macro 
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tracker". And the third algorithm addresses applying the depth information in blob 

tracking. The later algorithm is particularly more robust in handling occlusion which 

may occur in HCI applications. 

Moreover, the robustness of our method against noise makes it a good candidate for 

use with cheap cameras and real-world vision-based HCI applications. This method i s  

to be  applied in  conjunction with a fast pixel-based skin calor segmentation algorithm 

as the level of noise and the quality of the skin detection are not deterministic . 

Finally in Chapter 6o main parts : i) gesture modeling, and ii) gesture recognition. The 

gesture modeling technique is based on sampling the gradient of the gesture 

movement trajectory and presenting the gesture trajectory as a sequence of numbers. 

This technique has some important features for gesture recognition including 

robustness against slight rotation , - small number of required samples, invariance to the 

start position and device independence. For gesture recognition, we used a multi-layer 

feed-forward neural-network. The results of our experiments show that this approach 

provides 98.7 1 %  accuracy for gesture recognition, and provides higher accuracy rate 

than other methods introduced in  the literature . 

These components form the required framework for .vision-based real-time, gesture 

recognition and hand and face tracking. The components, individually or as a 

framework can be applied in  scientific and commercial extensions of either vision­

based or hybrid gesture recognition systems. 
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7 . 1  Extending the work 

This work can be extended in several directions. Firstly, the adaptive skin detection 

algorithm can be used as a framework for localizing the skin in video sequences. 

Hence, limiting the search space in the image can dramatically improve the 

performance of computationally expensive, hand and face tracking algorithms. 

Moreover, employing other techniques such model-based and shaped-based matching 

would be easier and more accurate after limiting the search space. 

Secondly, the Fuzzy-based tracking algorithm can be enhanced usmg extra 

information from the image. As we demonstrated in Chapter 5, depth information can 

successfully be applied for this purpose. This makes the algorithm more accurate in 

distinguishing between objects and determining their boundaries. Particularly, this 

enhancement may be useful for vision-based human computer interaction 

applications. 

Finally, the gesture recognition technique can be extended in several directions. 

Ability of detection of hand postures and interpreting more complex gestures will 

move this technique to the next level. This ability makes the final gesture recognition 

system suitable for other purposes such as sign language interpretation or 

implementing more comprehensive man-machine interfaces. Adding more channels 

of information is another challenge and may be necessary for some specific 

applications. For instance, the movement trajectory in 3D space or having the 

movement velocity may be required for controlling a virtual orchestra or 

manipulating a virtual environment by hands. 
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7.2 The future of gesture recognition systems 

Vision-based gesture recognition technology is still in the early stages of 

development, but it is growing steadily. According to Gartner, in the next few years, 

gesture recognition will probably be used primarily in niche applications [2] . The 

activities of the big players in the ICT industry are witnessing to thi s  claim. Recently, 

Microsoft24, HP25 and Sony have started investing this technology . Some of the cell 

phone giants, such as Nokia and Samsung have started to add simple gesture 

recognizers to their next generation cell phones. In addition, some of the software 

producers such as Electronic Arts upon availability of the game consoles equipped 

with camera have decided to add vision-based gesture recognition technology to the 

next generation of their games26. It is said that gesture recognition is one of the five 

technologies which will change the way you do business27 . 

24 ht!Jl :1/www. microsoft. com/wi ndowsx p/usi ng/ta b letpclleam more/gestures. mspx 

25 http://insight.zdnet.co.uklsoftwarel0.39020463.39268336.00.htm 

26 www. gamespot.com/news/6 1 48455 .html 

27 http://www.inc.com/magazine/2006070 1 /column-freedman .html 
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