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We train a face detection system using the PSL framework [1] which combines the AdaBoost
learning algorithm and Haar-like features. We demonstrate the ability of this framework to
overcome some of the challenges inherent in training classifiers that are structured in cascades
of boosted ensembles (CoBE). The PSL classifiers are compared to the Viola-Jones type cas-
caded classifiers. We establish the ability of the PSL framework to produce classifiers in a
complex domain in significantly reduced time frame. They also comprise of fewer boosted en-
sembles albeit at a price of increased false detection rates on our test dataset. We also report
on results from a more diverse number of experiments carried out on the PSL framework in
order to shed more insight into the effects of variations in its adjustable training parameters.
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1 Introduction

Face detection has received much attention in the recent years in the field of computer vision.
Though a number of notable face detectors with accurate and fast execution runtimes in controlled
environments have been developed, the problem of developing robust face detectors that operate
in variable environments is still an open problem.

The most successful methods so far have been extensions of the seminal work by Viola-Jones,
which combined AdaBoost as the learning algorithm together with Haar-like features that can be
computed rapidly through integral images. The key feature of this detector was the decomposition
of a monolithic ensemble of boosted weak classifiers into cascades. This reduced the problem of
classification into a series of binary classification sub-problems whereby each succeeding layer in a
cascade layer considers decisions of increased difficulty. This means that during the training phase
of the boosted classifier, the positively predicted samples advance for further training in subsequent
layers while the negatively predicted samples are removed from training. By using bootstrapping
on the negative training samples, new negative samples which are predicted as positives can be
introduced into training to replace the rejected samples. In the process the difficulty of each sub-
problem increases and results in a final detector’s low false acceptance rates. At detection time,
which involves exhaustive scanning of an image, the cascading allows for rapid rejection of the
majority of sub-windows in early cascade layers without the need to calculate the entire cascade,
thereby preserving real-time classification properties.

Despite the successes achieved using cascades of boosted ensembles in both accuracy and real-
time performance, the greatest obstacle to their wider proliferation when deployed in face detection
or similarly computationally intensive domains, lie in their protracted training runtimes [2]. The
ground breaking face detector from Viola-Jones required weeks of computing to produce a cascaded
classifier using multiple machines. The reasons behind protracted training runtimes lies with several
factors.
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[3] identify the generation of large feature spaces as a primary contributor to slow training
runtimes when employing Haar-like feature types. The total size of the feature pool can easily
comprise a search space of several billion features even on conservatively sized datasets utilising
a modest number of Haar-like feature types. For each boosting round, this feature pool has to be
both extracted from an image and searched through in order to find the feature with the lowest
error rate. This process may require thousands of boosting iterations in order to produce a final
classifier.

Various strategies for addressing the computational demands of a large feature pool have been
proposed. [4,5] employ feature filtering in order to limit its size. This produced notable speed-ups
but in the process ignored the weight distributions of the boosting process, rendering the features
incompatible with the boosting approach. [6] on the other hand propose a strategy of caching the
extracted feature values of an entire feature pool in order to limit the computational cost involved
in re-calculating it for each round of boosting. Consequently, only the weights have to be adjusted,
however this approach imposes massive memory requirements. [3] achieve a dramatic reduction
in the amount of time required to train each weak classifier by applying statistical methods and
assumptions regarding the distribution of the feature space.

Training a single cascade layer requires that the hit and detection rates converge to a specified
target. The slow convergence to these targets has also been identified as an issue [7]. In order to
produce a detector with high detection and low false acceptance rates, each cascade layer must
ensure that the positive hit rate is set to near 100% while a moderate false alarm rate is typically
set in vicinity of 50%. [7] observe that as the training becomes more difficult with each succeeding
cascade layer, the harder it becomes to meet layer targets and the training becomes longer. To
facilitate a faster convergence process and to help guarantee a near 100 hit rate, [7] introduced
artificial threshold adjustments. Though the threshold adjustments assisted in maintaining a high
training detection rate, they also introduce an elevated false acceptance rate and by their nature
become computationally more expensive as a layer size increases.

[8–11] attempted to accelerate the cascade layer convergence speed by strengthening the dis-
criminatory ability of the feature types and though many of the efforts yielded fewer weak classi-
fiers, the additional computational costs associated with more powerful features did not succeed
in shortening the actual training runtimes. Alternatively, the AdaBoost learning algorithm has
likewise been modified by [12–14] to produce variants with same intentions, however none have
significantly contributed to a training runtime reduction involving layer convergences.

The final contributing factor involves cascade optimisation. The optimal configuration of ad-
justable parameters for layer detection and false acceptance rates are not known a priori and in
many detectors for whom real-time capability is paramount, typically a third parameter involving
the maximum number of permissible weak classifiers is also introduced. As a result, multiple clas-
sifiers with different parameter settings need to be trained from which the best candidate is chosen
manually using a trail and error process. The feasibility of re-training classifiers that already
require weeks at a time for the purpose of finding an optimal candidate becomes an extremely
prolonged process. Though some research [15, 16] has been conducted into automating cascade
parameter optimisation, it remains an unsolved problem.

The motivation for this paper is to present experimental results of face detectors trained using
the PSL framework first proposed by Barczak [1] and deployed in training detectors for a number
of UCI datasets in [17, 18]. We show that it has the ability to substantially reduce the training
runtime phase by specifically addressing the difficulties encountered at layer convergences. The
PSL framework removes the need for artificial layer adjustments whilst guaranteeing 100% hit
rates and in the process also removes the adjustable parameter for layer detection rates. Lastly, we
present more comprehensive empirical results of the behaviour of this learning framework under
different parameter settings not experimented with before.
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Figure 1: a) The standard cascade structure. b) the PSL structure [1].

2 The PSL Training Framework

The PSL framework can be seen in Figure 1b and is compared to the standard cascading approach
of Viola-Jones in Figure 1a. The PSL architecture extends the standard cascading structure by
introducing an additional cascade within each layer, thus creating a quasi two dimensional cascade
structure. While the Viola-Jones approach executes an independent round of AdaBoost training
for each layer, the PSL framework in addition executes multiple independent rounds of AdaBoost
within each layer and in the process constructs a complementing cascade with an alternate goal.
To dispel confusion and to signify the different role that the two cascading layer types play, each
layer of an internal cascade is refered to as a node.

Whereas the cascading of the Viola-Jones method focuses on rejecting negative training samples
which are then removed from the learning process, the intra-layer cascading of the PSL framework
focuses on correctly predicting positive samples which are then removed from the intra-layer cascade
of nodes. Thus, the underlying principle found in the Viola-Jones method with respect to its
approach to handling more difficult negative samples with each succeeding layer, is applied to the
positive samples in the node-to-node propagation of the PSL framework seen in Figure 2a. As the
intra-layer cascade of nodes is constructed, correctly predicted positive samples are removed from
succeeding nodes while the misclassified positives are retained until all the positive samples have
been correctly predicted.

The mode of node-to-node propagation of the negative training samples in the intra-layer
cascade is identical to the manner in which the positive training samples propagate from layer-
to-layer in the Viola-Jones cascades. This means that all negative training samples are made
available to each node irrespective of how successfully previous nodes have learned to predict them
demonstrated in Figure 2b. Each node is assigned a target to learn to reject 50% of the negative
samples and to achieve a 100% hit rate as in the Viola-Jones method. However a key constraint is
added to each node which accelerates the layer convergence. This constraint restricts the size of
each node to a predetermined maximum number of weak classifiers.

With the difficulties of cascade training having been already highlighted, and in particular in
the area of cascade parameter optimisation, questions arise as to how does adding an extra cascade
with its own set of new parameters solve the issues of cascade training in general? The answer
lies in the fact that the intra-layer cascading provided by the PSL framework removes the trail-
and-error trade-off association between the detection rate, false acceptance rate and the number
of weak classifiers permitted per layer. The PSL cascade-of-nodes guarantees that a 100% hit rate
will be achieved within a required number of weak classifiers in every cascade layer. This preserves
both the generalisation rate due to high detections at training as well as the real-time execution
capability due to a limited number of weak classifiers enforced by each node. This leaves only
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Figure 2: a) The propagation of positive training samples within the cascade of PSL nodes inside a
layer. 1 b) The usage of negative training samples within the cascade of PSL nodes inside a layer.

the layer false acceptance rates without an explicit guarantee of being secured. However, even if
the false acceptance rates are found to be too high during training, the PSL structure has the
capability to dynamically increase the maximum size of the nodes in order to meet targets.

The PSL framework addresses the inherent difficulty of CoBEs and accelerates the training
runtimes by providing a solution to the slow convergence rates of cascade layer training by elimi-
nating the trade-off between the primary layer target parameters. It also accelerates training due
to the fact that it makes the computation of artificial layer adjustments redundant and guarantees
each succeeding node will have to learn to predict a decreasing number of positive samples.

3 Method

Experiments were devised to compare the PSL framework against the standard Viola-Jones frame-
work. For both frameworks, four classifiers were trained; one classifier for each dataset of a different
size whose properties are shown in Table 1. Additionally, the experiments sought to compare PSL
classifiers produced with variations in the size of the nodes. Four node sizes were selected ranging
from 5-20 weak classifiers at a 5 weak classifier increments. Each PSL node size produced four
classifiers for each of the different training dataset sizes. Table 2 shows the training parameters
used for producing these classifiers. The training data used for all classifiers was a subset of the
FERET face dataset.

All classifiers were trained with a balanced sized negative and positive training set. Negative
bootstrapping in the form of [19] was used to replace correctly predicted negative samples which are
removed at the conclusion of each layer. The new negative sample images were collected by raster
scanning a negative image at different kernel scales. Incorrectly classified negative sub-windows of
a negative image formed the negative training samples for subsequent layers. All classifiers were
trained until a zero training error was achieved or until no more negative training samples could
be generated. Using this method, even though the training sets were balanced in size during the
actual learning thus skewing the learning in favour of rejecting negative samples, in effect by the
end of training each classifier was exposed to millions more negatives than positives. The largely
disproportionate exposure of the classifier to negatives in respect to positives is necessary and
consistent with the operating domain for the classifiers where rare event detection is encountered.

The classifiers were tested using the CMU MIT image dataset containing 130 images which
contain 506 positive face images. The number of negative samples generated from the 130 images
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Table 1: Training settings and dataset details.
Property Attribute

Positive and negative dataset sizes 500,1000, 1500,2000
Node sizes for each dataset (PSL only) 5,10, 15,20
Number of Haar-like feature types 8
Maximum Haar-like features per image sub-window 200000
Minimum pixel area size per Haar-like feature 16
Maximum available negative images 6422
Sub-window scale increase factor 1.2
Sub-window raster scan pixel increment 2
Positive sample kernel size 24x24
Initial sub-window size 24x24

Table 2: Classifier tuning parameters for all experiments.
Property Setting

Target training error 0%
Target layer hit rate 100%
Target layer false alarm rate 50%
Maximum nodes per layer (PSL only) 10
Maximum layers 100

were 72,654,174. Each image was scanned by raster beginning with a 24x24 pixel kernel. After each
calculation of a sub-window, the kernel shifted by two pixels until the entire image was scanned
and thereafter increased by scale of 1.2. An error margin was given for each positive sample and
calculated to be one quarter of image’s length and hight in each direction on its axis.

4 Results

The analysis of the results will focus on three areas. The first will compare the training phases
of all classifiers. The second area will examine the accuracy of the classifiers while the third will
present runtime performances. The goal of this section will be twofold. Firstly, we will attempt
to draw conclusions from observations of how PSL classifiers trained with different node sizes have
performed against one another in order to be able to ascertain what might be optimal node sizes
for PSL training. Secondly, we will discuss the results of PSL classifiers in respect to those of
Viola-Jones.

4.1 The Training Phase

A zero training error rate was attained by all classifiers. The training runtimes comparing PSL
classifiers of variable node sizes is shown in Figure 3. The figure shows that on this dataset, the
classifiers with smaller nodes consistently produce training runtimes that are of a shorter duration.
When comparing the PSL training runtimes to those of the Viola-Jones styled classifiers in the
same figure, the difference becomes more pronounced. Here we see that the PSL classifiers are
significantly faster at producing classifiers than the Viola-Jones method.

Figures 4 and 5 show the typical false alarm rate convergence pattern of PSL classifiers. The
end point of the final nodes highlights the false acceptance rate achieved for a given layer in a
cascade. The figures demonstrate that the generation of each subsequent node in a layer of the
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PSL structure increases the difficulty of satisfying the layer false acceptance rates. It also shows
that succeeding nodes have the tendency to introduce a false acceptance rate in training that is
in many cases considerably higher than that of the prior nodes, even if the prior nodes manage
to achieve low false acceptance rates. This characteristic ultimately affects the potential training
runtime since newer bootstrapped negative training samples will be introduced at a slower rate
with each succeeding layer. The result is that an increased number of negative training samples
from previous layers will be re-trained without improving the potential generalisation rate of a
final classifier.
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Figure 3: Training runtimes in CPU seconds for all classifiers on the four CMU MIT datasets.

4.2 Classifier Accuracy

We use the receiver operating curves (ROC) to analyse classifier accuracy which is the standard
measurement tool for classifiers. Figure 6 show classifiers for each of the training structures on four
different datasets. They show only a selected and more relevant interval of the ROC curve for false
detection rates of up to 0.01%. A consistent feature is found when comparing the PSL classifiers
with varying node sizes. On this test dataset, the PSL classifiers trained with the smallest allowable
node dimension produced the poorest generalisation rates on all datasets. As node sizes increase,
there is clear evidence of partiality towards stronger generalisation rates. However, classifiers
trained with the largest nodes did not exhibit superior generalisation on every dataset. These
results do not permit a conclusion to be made on what is an optimal node dimension for training
face detection PSL classifiers on datasets of any size but they do signify that a node size of below
10 weak classifiers is likely to compromise generalisation.

In comparing the PSL and Viola-Jones classifiers, the best generalisation for very small false
detection rates is achieved by the Viola-Jones method. The stronger generalisation performance
of the Viola-Jones framework over the PSL classifiers can be due to several factors. The primary
focus of the PSL framework is the preservation of high hit rates during training. This may disad-
vantage the PSL framework in an operating environment of face detectors which involves rare-event
detection since PSL introduces a higher false detection rate that is more critical in this domain.
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Figure 4: Graphs showing typical convergence patterns of the false alarm rates for PSL classifiers
in which the PSL classifier trained on a 2000 samples dataset with a node size of 10 is featured with
layer targets of a 100% hit rate and 50% false alarm rate. Each graph represents the convergence
of a single layer in which there are multiple plots, one for each node. The graphs demonstrate the
an elevated false alarm rate at the end of layer and the increasing size of the false alarm rate as the
number of nodes increase. Classifier layers from 1 - 8 are depicted (some nodes within the layer
may contain a single weak classifier).



75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 9

Cascade Layers
Node 1
Node 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 10

Cascade Layers
Node 1
Node 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 11

Cascade Layers
Node 1
Node 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 12

Cascade Layers
Node 1
Node 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 13

Cascade Layers
Node 1
Node 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 14

Cascade Layers
Node 14
Node 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 15

Cascade Layers
Node 1
Node 2
Node 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

F
al

se
 a

la
rm

 r
at

e

Number of weak classifiers per layer

Typical PSL False Alarm Rate Convergence - Layer 16

Cascade Layers
Node 1
Node 2

Figure 5: Graphs showing typical convergence patterns of the false alarm rates for PSL classifiers
in which the PSL classifier trained on a 2000 samples dataset with a node size of 10 is featured with
layer targets of a 100% hit rate and 50% false alarm rate. Each graph represents the convergence
of a single layer in which there are multiple plots, one for each node. The graphs demonstrate the
an elevated false alarm rate at the end of layer and the increasing size of the false alarm rate as
the number of nodes increase. Classifier layers from 9 - 16 are depicted.
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The elevated false detection rate of the PSL framework is a consequence of a flaw in the training
structure’s current approach to training nodes in each layer. At present, we observe that the first
node in each layer is exposed to all positive samples from a training dataset while the succeeding
nodes ’see’ subsets of the original with ever decreasing sizes. It is often the case that the final nodes
in a layer are exposed to very few positive samples resulting in overfitting. Since at detection time
a negative sample can only be rejected if all nodes in a layer correctly predict the sample as a
negative, the false detection rate for any given layer will only be as good as the performance of
its weakest node. Thus a chain is only as strong as its weakest link. When the entire cascade is
considered in the PSL framework, the overall false detection becomes the combined accuracy of
the weakest nodes from each layer.
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Figure 6: ROC graph curves for on the CMU MIT datasets showing the generalisation patterns
of all classifiers. a) 500 positive/500 negative CMU MIT dataset. b) 1000 positive/1000 negative
CMU MIT dataset. c) 1500 positive/1500 negative CMU MIT dataset. d) 2000 positive/2000
negative CMU MIT dataset.

4.3 The Detection Phase Performance

The total number of weak classifiers making up a final classification rule are indicative of the
classifiers ability to execute in real-time. Together with this, in a rare-event detection environment
such as face detection, it is important that a cascaded classifier consists of a sufficient number
of layers that allow an early rejection of a majority of negatives using as few weak classifiers as
possible. Figure 7 displays the total number of weak classifiers comprising each strong classifier
for each of the training sets. The actual effects of the different node dimensions on the number of
weak classifiers generated by each PSL classifier were inconclusive in these experiments. However,
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when comparing the PSL and Viola-Jones methods, the largest classifiers were created by the
Viola-Jones framework. The PSL classifiers consisted of a fraction of the size of the Viola-Jones
classifiers.

 100

 200

 300

 400

 500

 600

 700

500/500 Dataset

1000/1000 Dataset

1500/1500 Dataset

2000/2000 Dataset

N
um

be
r o

f W
ea

k 
C

la
ss

ife
rs

Classifiers

Weak Classifier Totals

PSL Max Node Size 5
PSL Max Node Size 10
PSL Max Node Size 15
PSL Max Node Size 20

Cascaded

Figure 7: Weak classifiers totals per strong classifiers for each framework on the four CMU MIT
datasets.

The correlation between the number of weak classifiers generated by the learning framework
and its execution runtime can be seen in Figure 8. The figure provides classifier runtime perfor-
mances on the test dataset showing that the PSL classifiers outperform the Viola-Jones classifiers.
However, the figure also shows that as the node sizes for the PSL classifiers increase, their runtime
performance begins to resemble that of the Viola-Jones classifiers.

PSL Discussion

A better understanding has been gained regarding the role intra-layer node sizes defined at training,
influence the accuracy and the performances of the resulting classifiers. The training runtimes are
fastest for classifiers constructed with smallest node sizes and increase as the size of the nodes is
enlarged. Likewise, execution runtimes are most rapid for classifiers trained with smaller nodes
and continue to rise with increases in node sizes.

The analysis of PSL classifier accuracy has shown that there does not exist an exact linear
improvement with increases or decreases in node sizes. In this problem domain and test dataset,
classifiers with larger nodes have for the most part shown a better generalisation pattern but based
on the results it is not possible to say exactly which one node size is the most suitable for producing
optimal classifiers on datasets of varying sample sizes. The issue of setting optimal node sizes for
training PSL classifiers appears domain specific and depends on the difficulty of the target object
being trained.

Several issues regarding the PSL framework have been highlighted in these experiments. There
is a need to address the elevated false detections rate that become more pronounced in the rare-
event operating environments. A logical starting point would be to address the training which
occurs on each of the last nodes in a layer. One approach could be to devise a method which
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Figure 8: Execution runtimes for PSL and Viola-Jones classifiers on the CMU MIT test datasets.

guarantees that a minimal number of positives samples are present in the final node in order to
prevent over-training occuring on a handful of positive samples.

The difficulty of achieving layer targets as node numbers increase has also been highlighted.
Figures 4 and 5 have shown the pattern of convergence of the false acceptance rates which is
obstructed in the PSL framework for two reasons. The first reason can be seen in these figures at
the conclusion of the creation of each node. All previous information regarding the performance of
the negative training samples is lost since the AdaBoost algorithm resets all sample weights and
the boosting process re-starts from the beginning. [20] point out that this is valuable information
which can assist in producing faster convergence rates in succeeding layers and they show how
this information can be recycled through the idea of soft-cascades. Even though their suggestions
refered only to inter-layer cascading of Viola-Jones instead of intra-layer cascading occuring in
PSL, some ideas can be applied here.

The second reason is that the learning algorithm does not have the ability to differentiate
between negative samples which have been misclassified by previous nodes and those that have
not. The consequence is that AdaBoost inevitably focuses on rejecting negative samples in a given
node which cannot be ultimately rejected by the cascade-of-nodes as a whole. This is the case
since a unanimous vote is necessary by all the nodes in a layer, thus finally eroding the layer
false acceptance rates. One possible possible solution that would allow AdaBoost to focus only on
specific negative samples would be to propagate from node to node only those negative samples
which have been correctly predicted by the previous nodes in a layer.

5 Conclusion

In this paper a face detector was trained using the PSL framework which works on the principle
of cascades of boosted ensembles on the basis of Haar-like features. We demonstrated the ability
of the PSL framework to produce classifiers with a marked reduction in training runtimes con-
sisting of fewer weak classifiers and with a faster execution runtime over the standard Viola-Jones
method. The improvements however were attained with a slight elevation in false acceptance rates
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in comparison to the Viola-Jones method.
A deeper understanding into the PSL structure has been gained in respect to the setting

of parameters for its unique intra-layer cascading component. The experiments show that by
decreasing the maximum allowable number of weak classifiers per intra-layer cascade, there arises
a clear and general reduction in training as well as execution runtimes. However, the optimal setting
of this particular parameter on accuracy has been revealed to be application domain specific.

Future work on the PSL framework will involve efforts to address the problem of increased
false acceptance rates which play a more critical role in application domains operating under the
rare-event detection constraints.
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