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Abstract
In the author’s paper “Coupling and Mixing Times in Markov Chains” (RLIMS, 11, 1-
22, 2007) it was shown that it is very difficult to find explicit expressions for the
expected time to coupling in a general Markov chain. In this paper simple upper and
lower bounds are given for the expected time to coupling in a discrete time finite
Markov chain. Extensions to the bounds under additional restrictive conditions are also
given with detailed comparisons provided for two and three state chains.

1.  Introduction

In [2] the derivation of the expected time to coupling in a Markov chain and its relation
to the expected time to mixing (as introduced in [3], see also [1], [6])) was explored and
the two-state cases and three-state cases were examined in detail.

Considerable difficulty was experienced in attempting to obtain closed form
expressions for the expected coupling times. The main thrust of this paper is to explore
the derivation of easily computable upper and lower bounds on these expectations.

In Section 2 we summarise the main results on coupling. In Section 3 we derive some
new bounds and in Section 4 we compare these bounds with special cases considered in
[2].

2. Coupling times
Let P = [pij] be the transition matrix of a finite irreducible, discrete time Markov chain
{Xn},  (n ≥ 0), with state space S = {1, 2,…, m}. Such Markov chains have a unique
stationary distribution {πj}, (1 ≤ j ≤ m), that, in the case of a regular (finite, irreducible
and aperiodic) chain, is also the limiting distribution of the Markov chain ([5, Theorem
7.1.2]). Let πT   =  (π1, π2, ... ,πm

 ) be the stationary probability vector of the Markov
chain.

Coupling of Markov chains can be described as follows. Start a Markov chain {Yn},
with the same transition matrix P  and state space S  as for {X n}, operating under
stationary conditions, so that the initial probability distribution for Y0 is the stationary
distribution {πj}. Start the Markov chain {Xn} in an initial state i and allow each
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Markov chain to evolve, independently, until time T = n when both chains {Xn} and
{Yn} reach the same state for the first time at this n-th trial.  We call this the “coupling
time” since after time T each chain is coupled and evolves identically as the {Yn}
Markov chain, with each chain having the same distribution at each subsequent trial, the
stationary distribution {πj}.

Zn = (Xn,Yn), (n ≥ 0), is a (two-dimensional) Markov chain with state space S × S. The
chain is an absorbing chain with absorbing (coupling) states C = {(i, i), 1 ≤ i ≤ m} and
transient states T = {(i, j), i ≠ j, 1 ≤ i ≤ m, 1 ≤ j ≤ m}. The transition probabilities, prior
to coupling, are given by P{Zn+1 = (k, l) | Zn= (i, j) } = pik pjl , (see [2]). Once coupling
occurs at time T = n, Xn+k =  Yn+k   for all k ≥ 0.

If Z0 ∈C, coupling of the two Markov chains is instantaneous and the coupling time T =
0. Define Tij,kl  to be the first passage time from state ( i, j ) to state ( k, l). The time to
coupling in state k, starting in state (i, j),  (i ≠ j), is the first passage time Tij,kk to the
absorbing state (k, k). Let Tij,C, be the first passage time from (i ,j),  (i ≠ j) to the
absorbing (coupling) states C.  Define Tii,C  = 0, (1 ≤ i ≤ m), consistent with the coupling
occurring instantaneously if X0 = Y0 (in state i).
Under the assumption that the embedded Markov chains, Xn and Yn, are irreducible and
aperiodic (i.e regular) the transition matrix for the two dimensional Markov chain can
be represented in the canonical form for an absorbing Markov chain, as

P =
I 0
R Q
⎡
⎣
⎢

⎤
⎦
⎥ ,

where I is an m×m identity matrix, Q is an m(m – 1)×m(m – 1) matrix governing the
transition probabilities within the transient states T, and R is an m(m – 1)×m matrix
governing the transition probabilities from the transient states T to the absorbing
(coupling) states C.

Note that if the Markov chains, Xn and Yn are periodic (period m) then mixing either
occurs initially or never occurs! We restrict attention to embedded regular chains.

In [2] it was shown that, with probability one, starting in state (i, j), coupling will occur
in finite time. Let κ ij

(C ) = E[Tij ,C ]  be the expected time to coupling starting in state X0 =
i, Y0 = j, and let κ (C) ≡ (κ ij

(C ) ) be the column vector (of dimension m(m – 1)×1) of the
expected times to coupling. Then all the expected values are finite and, [2],

κ (C) =   (I −Q)−1e.                                                      (2.1)
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Since the states of the Markov chain {Yn} have at each trial the stationary distribution,
and since coupling occurs initially if i = j with Tii,C = 0, the expected time to coupling
starting in state i, (1 ≤ i ≤ m) is

τC ,i = π jj=1

m∑ E[Tij,C ] = π jj≠i∑ κ ij
(C ) .                               (2.2)

Let κ1
T = (κ12

(C ) ,...,κ1 j
(C ),...,κ1m

(C ) ),…, κ i
T = (κ i1

(C ) ,...,κ i ,i−1
(C ) ,κ i ,i+1

(C ) ,...κ im
(C ) ),  …,

κ m
T = (κ m1

(C ),...,κ m,m−1
(C ) ),  and re-express κ  as κ T = (κ 1

T ,...,  κ i
T ,..., κ m

T ) .

 Define ρ
i

T = π T [e1,e2 ,...,ei−1,ei+1,...,em ] = (π1,...,π i−1,π i+1,...πm ),   a modification of π T

to yield a vector of dimension 1× (m -1) (with πi removed at the i-th position from π T).
For 1 ≤ i ≤ m,

τC ,i = ρi
Tκ i .

From (2.1) observe that κ  can be obtained by solving the set of linear equations
 (I −Q)κ (C) = e.                                                        (2.3)

The Q-matrix is of dimension m(m – 1) × m(m – 1) and governs the transitions within
the    m(m – 1) transient states. This matrix contains some symmetry. The sub-matrix of
one-step transition probabilities governing transitions between the states (i, j) and (j, i)
(i ≠ j) has the structure

    (i, j)   ( j,i)
(i, j)
( j,i)

pii p jj pij p ji
pji pij p jj pii

⎡

⎣
⎢

⎤

⎦
⎥.

The transition probabilities from (i, j) to the other transient states have some
symmetrical reciprocity, i.e. for i ≠ j and r ≠ s,

P[(Xn+1,Yn+1) = (r, s) | (Xn,Yn) = (i, j)] = pirpjs  =  P[(Xn+1,Yn+1) = (s, r) | (Xn,Yn) = (j, i)].

The one step transition to any coupling state (k, k) has the same probability from either
(i, j) or (j, i) i.e.

P[(Xn+1,Yn+1) = (k, k) | (Xn,Yn) = (i, j)] = pikpjk  =  P[(Xn+1,Yn+1) = (k, k) | (Xn,Yn) = (j, i)].

Thus by labelling the states in successive symmetrical pairs, each even numbered row
of Q has the same probabilities, but interchanged in pairs, as the previous odd numbered
row. Furthermore these pairs of rows have identical probabilities in the same place in
the R matrix.

The net effect is that instead of solving the m(m – 1) linear equations present in (2.3),
we need only solve a reduced number of m(m – 1)/2 linear equations. This is effected by
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observing that κ ij
(C ) =κ ji

(C ) so that only these m(m – 1)/2  quantities (with i < j, say)
actually need to be solved. We elaborate further on this later.

We introduce some notation.

Let µij = pirr=1

m∑ pjr = P{(Xn+1,Yn+1) = (r,r)
r=1

m∑ | (Xn ,Yn ) = (i, j)}

          = P{(Xn+1,Yn+1) ∈C | (Xn ,Yn ) = (i, j)}
           = P Coupling occurs at the next trial The 2-dim MC is in state (i, j){ }.

Observe that  µij = pi
(r )T p j

(r ) =  µ ji where  pi
(r )T = (pi1, pi2 ,..., pim ), the i-th row of the

transition matrix P.

3.  Bounds

In a general Markov chain setting, elemental expressions of the key equations, Eqn.
(2.3), lead, for all i ≠ j, to

κ ij
(C ) −1 = pir p jsr≠ s∑∑ κ rs

(C ).                                           (3.1)

We deduce upper and lower bounds for κ ij
(C )  from Eqns. (3.1).

Theorem 1. If µij  > 0 for  all  i ≠ j , then, for all i ≠ j,

κmin ≤κ ij
(C ) ≤κmax,                                                    (3.2)

where κmin =
1

maxi≠ j µij

 and κmax =
1

mini≠ j µij

.

Proof: Assume that for all r ≠ s, κ rs
(C ) ≤κmax .                                                              (3.3)

Observe that
1 = ( pirr=1

m∑ )( pjss=1

m∑ ) = pir p jsr= s∑ + pir p jsr≠ s∑∑ = µij + pir p jsr≠ s∑∑ .           (3.4)

From Eqn. (3.1) and Eqn. (3.4) it follows that

    κ ij
(C ) ≤ 1+ pir p jsr≠ s∑∑( )κmax = 1+ (1− µij )κmax .                             (3.5)

Assumption (3.3) implies, using inequality (3.5), that it is sufficient to take

1+ (1− µij )κmax ≤κmax  and hence that µijκmax ≥ 1 , i.e. κmax ≥
1
µij

 for all i ≠ j .  This is

satisfied by taking κmax =
i≠ j
max

1
µij

=
1

mini≠ j µij

=
1

µmin
.
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Similarly let us assume that for all r ≠ s, κmin ≤κ rs
(C ) .                                                 (3.6)

From Eqn. (3.1) and Eqn.(3.4) we have that
                   κ ij

(C ) ≥ 1+ pir p jsr≠ s∑∑( )κmin = 1+ (1− µij )κmin.                               (3.7)
Similar to the argument used above, using assumption (3.6) and inequality (3.7), we

require 1+ (1− µij )κmin ≥κmin  and hence that µijκmin ≤ 1 . Thus , κmin ≤
1
µij

 for all i ≠ j ,

which is satisfied by taking  κmin =
i≠ j

min
1
µij

=
1

maxi≠ j µij

=
1

µmax

.   �

Corollary 1.1: Provided µij > 0 for  all  i ≠ j ,

(1− π i )
µmax

= (1− π i )κmin ≤ τC ,i ≤ (1− π i )κmax =
(1− π i )
µmin

 .                            (3.8)

Proof: Inequalities (3.8) follow directly from Eqn. (2.2) and Eqn. (3.2). �

If the stationary distribution {πi } of the underlying Markov chain is unknown then a
simpler, but slightly larger, upper bound for τC,i  valid for all i, follows from (3.8):

 τC ,i <κmax =
1

mini≠ j µij

=
1

µmin
=

1
mini≠ j pirr=1

m∑ pjr
.                                    (3.9)

Corollary 1.2: If the underlying Markov chain consists of independent trials, i.e. the
transition probabilities pij = pj, then for all i, j,

κ ij
(C ) =

1
pr
2

r=1

m∑
.                               (3.10)

Proof: Observe that µij = pr
2

r=1

m∑ ≡ µ . Thusmini≠ j µij = maxi≠ j µij = µ  and from (3.2)

we deduce 
1
µ
=κmin ≤κ ij

(C ) ≤κmax =
1
µ

leading to Eqn.(3.10).

Expression (3.10) can also be derived directly in this special case by solving Equations
(3.1) (see also Eqn. (5.7) of [2] ). �

In [2] it was shown that, under the condition of independent trials,

τC ,i =
pjj≠ i∑
pk
2

k=1

m∑
=
1− pi

pk
2

k=1

m∑
.

Since 1− 2 prr< s∑ ps = 1− [( pk )
2 − ( pk

2 )]
k=1

m∑k=1

m∑ = pk
2

k=1

m∑ ,

τC ,i =
1− pi

pk
2

k=1

m∑
=

1− π i

1− 2 prr<s∑ ps
.
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Thus the bounds given by Corollary 1.1. are tight under independence assumptions. The
interval (κmin, κmax ), or its width κmax −κmin , could be used as a measure of the departure
of the underlying MC from independence.

If expression (3.9) is used when the conditions of Corollary 1.1 are violated, the upper
bound grossly overestimates the maximum value of τC ,i . In those chains, if at least one
µij = 0 , the upper bound will be ∞. This will occur in those examples where pij  = 1 for
some pair (i,j), with i ≠ j, and  prj = 0 for some r ≠  i .

Since there are instances when some of the µij could be zero, it is necessary to explore
these cases in more detail.  We consider the reduced number of linear equations alluded
to in Section 2 above.

Define, for all i ≠ j and r ≠ s,
            α i , j

(r ,s ) = P (Xn+1,Yn+1) = (r, s) (Xn ,Yn ) ∈{(i, j),( j, i)}{ }
                     = P One step transition to state (r, s){  from either (i, j) or ( j, i)}
                     = pir p js + pjr pis .
Observe that  αi , j

(r ,s ) = α j ,i
(r ,s ) = α i , j

(s ,r ) = α j ,i
(s ,r ).  In each of these situations we shall write the

expression in the formα i , j
(r ,s )with i < j and r < s.

Further since for i ≠ j, κ ij
(C ) =κ ji

(C ) we write the common value as simply κ ij with i < j.

Thus from (3.1) above,
κ ij    

(C ) −1 = pir p jsr≠ s∑∑ κ rs
(C ) = pir p jsr<s∑∑ κ rs

(C ) + pir p jsr>s∑∑ κ rs
(C )

           = pir p jsr< s∑∑ κ rs
(C ) + pjs pims<r∑∑ κ sr

(C ) = (pir p js + pjr pis ) r<s∑∑ κ rs= α i, j
(r ,s )

r<s∑∑ κ rs .

Thus for all i < j,
κ ij −1 = α i , j

(r ,s)
r< s∑∑ κ rs .                                           (3.11)

Equation (3.11) is the reduced variant of the linear equations (3.1).

Note that, using Equation (3.4), the parameters α i , j
(r ,s ) have the property that for all i < j,

α i, j
(r ,s)

r< s∑ = (pir p jsr<s∑ + pjr pis ) = pir p jsr< s∑ + pis p jrs>r∑
                = pir p jsr< s∑ + pir pjsr> s∑ = pir p jsr≠ s∑ = 1− pir p jrr∑
                = 1− µij .

             (3.12)

Theorem 2. Without loss of generality, assume a < b and i < j.   If µab = 0 and  µij > 0
for all (i, j ) ≠ (a, b) , then for all (i, j ) ≠ (a, b),
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κmin ≤κ ij ≤κmax,                                                    (3.13)

with                            1
1−αa ,b

(a ,b ) +κmin ≤κ ab ≤
1

1−αa,b
(a,b) +κmax,                                 (3.14)

where                       κmin = min
i< j ,(i, j )≠(a,b)

λi, j
(a ,b )

µij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  and κmax = max
i< j ,(i , j )≠(a,b)

λi , j
(a,b)

µij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ,                 (3.15)

with                         λi, j(a ,b ) = 1+
α i , j
(a,b)

1−αa ,b
(a,b ) .                                                                      (3.16)

Proof: From the reduced equations (3.11), with a < b and i  < j,
κ ab −1 = αa,b

(a,b)κ ab + αa,b
(r ,s )

r<s,(r ,s )≠ (a,b)∑∑ κ rs

implying κ ab(1−αa ,b
(a,b ) ) = 1+ αa,b

(r ,s)
r<s ,(r ,s )≠(a,b)∑∑ κ rs .

From (3.12) αa ,b
(r ,s)

r< s∑ = 1− µab = 1,  so that αa,b
(r ,s )

r< s,(r ,s )≠(a,b)∑ = 1−αa ,b
(a ,b ) .

Assuming (3.13), i.e. κmin ≤κ ij ≤κmax ,

1+ 1−αa ,b
(a ,b ){ }κmin ≤ 1+ αa ,b

(r ,s)
r<s ,(r ,s )≠(a ,b )∑∑ κ rs =κ ab (1−αa ,b

(a ,b ) ) ≤ 1+ 1−αa,b
(a,b){ }κmax

and result (3.14) follows.
The Theorem will follow once we establish the values for the bounds (3.15).

For i < j, from equations (3.11),
κ ij −1−α i, j

(a ,b )κ ab = α i , j
(r ,s )

r< s,(r ,s)≠(a,b)∑∑ κ rs .                             (3.17)

Now from (3.12), α i , j
(r ,s )

r< s,(r ,s )≠(a,b)∑∑ = 1− µij −α i, j
(a ,b ) , so that from Eqn.(3.17),

(1− µij −α i, j
(a,b ) )κmin ≤κ ij −1−α i , j

(a ,b )κ ab ≤ (1− µij −α i, j
(a,b ) )κmax ,

or that (1− µij −α i, j
(a,b ) )κmin +1+α i , j

(a,b)κ ab ≤κ ij ≤ (1− µij −α i, j
(a,b ) )κmax +1+α i, j

(a ,b )κ ab .
Using (3.14), the above expression is bounded above and below as

(1− µij −α i, j
(a,b ) )κmin +1+α i , j

(a,b) 1
1−αa,b

(a,b) +κmin

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤κ ij

                                                                      ≤ (1− µij −α i, j
(a,b ) )κmax +1+α i, j

(a ,b ) 1
1−αa,b

(a,b) +κmax

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
which simplifies, using Eqn. (3.16), to (1− µij )κmin + λi , j

(a,b) ≤κ ij ≤ (1− µij )κmax + λi, j
(a ,b ).

Since we require the lower and upper quantities of the above expression to be bounded
below by κmin  and above by κmax , respectively, we further require, for all i  < j,
κmin ≤ (1− µij )κmin + λi , j

(a,b)  and and (1− µij )κmax + λi , j
(a,b ) ≤κmax  implying µijκmin ≤ λij

(a ,b )  and

λi, j
(a ,b ) ≤ µijκmax leading to expressions (3.15). �

Theorem 2 requires µab = parr=1

m∑ pbr = 0 . This implies that par pbr = 0 for all r.
In particular paa pba = 0 and pab pbb = 0.  Thus there are four possible cases:
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(i) paa = 0 and pbb = 0,(ii) paa = 0 and pab = 0,(iii) pba = 0 and pbb = 0,(iv) pba = 0 and pab = 0.

These conditions will place restrictions, in particular, on αa,b
(a ,b ) = paa pbb + pba pab .

For the respective cases: (i) αa,b
(a,b) = pba pab , (ii) αa,b

(a,b) = 0, (iii) αa,b
(a,b) = 0,  (iv) αa,b

(a,b) = paa pbb .
A simplification of Eqn. (3.15) and (3.16) can now be carried out for each of these
special cases.

Let us extend Theorem 2 to the situation where we have two distinct pairs of states
(a, b) and (c, d), where µab = 0 and µcd = 0.  Without loss of generality, we may
assume a< b and c < d.

Theorem 3. Without loss of generality, assume a < b, c < d (with (a, b) ≠ (c, d)) and
i < j. If µab = 0,  µcd = 0 and  µij > 0 for all (i, j ) ≠ (a, b) and (c, d), then for all (i, j ) ≠
(a, b), (c, d),

κmin ≤κ ij ≤κmax ,                                                   (3.18)

with                           
1+αa ,b

(c,d ) −α c,d
(c,d )

τ 2
+κmin ≤κ ab ≤

1+αa,b
(c,d ) −α c,d

(c,d )

τ 2
+κmax ,           (3.19)

1+α c,d
(a ,b ) −αa ,b

(a,b )

τ 2
+κmin ≤κ cd ≤

1+α c,d
(a,b ) −αa,b

(a,b)

τ 2
+κmax,         (3.20)

where                   κmin = min
i< j ,(i, j )≠ (a,b),(c,d )

λi, j
(a ,b;c,d )

µij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  and κmax = max

i< j ,(i , j )≠(a ,b ),(c,d )

λi , j
(a,b;c,d )

µij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  (3.21)

            

with                            λi, j(a ,b;c,d ) = 1+
α i , j
(a,b)(1+αa,b

(c,d ) −α c,d
(c,d ) ) +α i , j

(c,d )(1+α c,d
(a,b) −αa,b

(a,b) )
τ 2

,      (3.22)

where                                    τ 2 = (1−αa,b
(a ,b ) )(1−α c,d

(c,d ) ) −αa,b
(c,d )α c,d

(a ,b ).                        (3.23)
Proof: From the reduced equations (3.11), for distinct pairs (a, b), (c, d) and (i, j) with a
< b, c < d and i  < j,

κ ab = 1+αa,b
(a,b)κ ab +αa,b

(c,d )κ cd + Δab ,                                        (3.24)
κ cd = 1+α c,d

(a,b)κ ab +α c,d
(c,d )κ cd + Δcd ,                                       (3.25)

 κ ij = 1+α i, j
(a ,b )κ ab +α i, j

(c,d )κ cd + Δij ,                                        (3.26)

where, for all (i,j),  Δij = α i , j
(r ,s )

r<s,(r ,s )≠ (a,b),(c,d )∑∑ κ rs.
From Eqns.(3.24) and (3.25),

B
κ ab

κ cd

⎡
⎣
⎢

⎤
⎦
⎥ ≡

1−αa,b
(a,b) −αa,b

(c,d )

−αc,d
(a,b) 1−α c,d

(c,d )

⎡

⎣
⎢

⎤

⎦
⎥
κ ab

κ cd

⎡
⎣
⎢

⎤
⎦
⎥ =

1+ Δab

1+ Δcd

⎡
⎣
⎢

⎤
⎦
⎥ .

.
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Since  det(B) = τ2,  as given by (3.23), taking the inverse of B yields
κ ab

κ cd

⎡
⎣
⎢

⎤
⎦
⎥ = B

−1 1+ Δab

1+ Δcd

⎡
⎣
⎢

⎤
⎦
⎥ =

1
τ 2

1−α c,d
(c,d ) αa,b

(c,d )

α c,d
(a,b ) 1−αa,b

(a ,b )

⎡

⎣
⎢

⎤

⎦
⎥
1+ Δab

1+ Δcd

⎡
⎣
⎢

⎤
⎦
⎥ ,

so that
κ ab

κ cd

⎡
⎣
⎢

⎤
⎦
⎥ =

1
τ 2

1+αa,b
(c,d ) −α c,d

(c,d ) + (1−α c,d
(c,d ) )Δab +αa,b

(c,d )Δcd

1+α c,d
(a,b) −αa,b

(a ,b ) +α c,d
(a ,b )Δab + (1−αa ,b

(a ,b ) )Δcd

⎡

⎣
⎢

⎤

⎦
⎥ .               (3.27)

Since, for all (i,j), α i , j
(r ,s )

r< s,(r ,s )≠(a,b),(c,d )∑∑ = 1−α i, j
(a ,b ) −α i, j

(c,d ) − µij ,                       (3.28)

αa,b
(r ,s )

r< s,(r ,s )≠(a,b),(c,d )∑∑ = 1−αa ,b
(a ,b ) −αa ,b

(c,d ),  and

α c,d
(r ,s )

r< s,(r ,s )≠(a,b),(c,d )∑∑ = 1−α c,d
(a ,b ) −α c,d

(c,d ) .

Assuming (3.18), i.e. for (i, j) ≠ (a, b), (c, d),  κmin ≤κ ij
(C ) ≤κmax , from the definition of

Δij ,
(1−αa ,b

(a ,b ) −αa ,b
(c,d ) )κmin ≤ Δab ≤ (1−αa,b

(a,b) −αa,b
(c,d ) )κmax

and                            (1−α c,d
(a ,b ) −α c,d

(c,d ) )κmin ≤ Δcd ≤ (1−α c,d
(a,b ) −α c,d

(c,d ) )κmax .

From these above two bounds, the bounds given by Eqns (3.19) and (3.20) now follow
upon simplification from Eqns.(3.27).

Now, from Eqn.(3.26), using the upper and lower bounds given by Eqns.(3.19) and
(3.20) together with (3.28), it is easily shown, using the definition (3.22) that

λi, j
(a ,b;c,d ) +  (1− µij )κmin ≤κ ij ≤ λi , j

(a,b;c,d )  +  (1− µij )κmax.
Now, since the left hand side and the right hand side of the above equation must be
bounded below by κmin  and bounded above by κmax  respectively, the expressions given
by (3.21) now follow.  �

Theorem 3 can be extended further to incorporate the situation of multiple pairs of
states with zero probability of a one step to coupling. Note that there must be at least
one pair of states where a single step takes the chain to a coupling state, since coupling
occurs with probability one. (Otherwise, the chain is either an absorbing chain or
consists of periodic states.)

Theorem 4.  Supposeµaibi = 0,  (ai  < bi ) for i = 1, 2, …, n and  µij > 0 otherwise (with
 n <m(m – 1)/2).  Then for (i, j) ∉{(a1, b1), …, (an, bn)},

κmin ≤κ ij ≤κmax,                                                    (3.29)

with, for i = 1, 2, …, n,       Aijj=1

n∑ +κmin ≤κ aibi ≤ Aijj=1

n∑ +κmax ,                         (3.30)

where                       κmin = min
i< j ,(i, j )≠(a1 ,b1 ),...,(an ,bn )

λij
µij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and  κmax = max
i< j ,(i , j )≠(a1 ,b1 ),...,(an ,bn )

λij
µij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (3.31)
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with                            λij = 1+ Arsα i , j
(ar ,br )

s=1

n∑r=1

n∑ ,                                                 (3.32)

and Ars[ ] = (I − A)−1 and  A is the n × n matrix A = ars[ ] = αar ,br
(as ,bs )⎡⎣ ⎤⎦ .

Proof: From the reduced equations (3.11), for distinct pairs (ai, bi), (i =1, 2, …, n) with
ai, < bi

κ aibi = 1+ αai ,bi
(ak ,bk )κ akbkk=1

n∑ + Δaibi ,                                        (3.33)
 and for  i < j, (with (i, j) ≠ (ai, bi),
                                       κ ij = 1+ α i , j

(ak ,bk )κ akbkk =1

n∑ + Δ ij ,                                          (3.34)

where, for all (i, j),    Δij = α i , j
(r ,s )

r<s,(r ,s )≠(a1 ,b1 ),...,(an ,bn )
∑∑ κ rs.

Let κ T = (κ a1b1
,κ a2b2

,....,κ anbn ) and ΔT = (Δa1b1
,Δa2b2

,....,Δanbn ) . From Eqn.(3.33)
κ = e + Aκ + Δ ,  i.e. (I − A)κ = e + Δ  implying κ = (I − A)−1(e + Δ) .

Now for i = 1, 2, …, n, using Eqn.(3.29),

αai ,bi
(r ,s ) )

r< s,(r ,s)≠(a1 ,b1 ),...,(an ,bn )
∑∑( )κmin ≤ Δaibi ≤ αai ,bi

(r ,s ) )
r< s,(r ,s)≠(a1 ,b1 ),...,(an ,bn )

∑∑( )κmax .

Since, from (3.12),  α i , j
(r ,s )

r<s∑∑ = 1− µij , it follows, under the conditions of the
theorem for i = 1, 2, .., n, that

(1− αai ,bi
(ak ,bk ) )

k=1

n∑  κmin ≤ Δaibi ≤ (1− αai ,bi
(ak ,bk ) )

k=1

n∑  κmax.

i.e.                                  (1− aik )
k=1

n∑  κmin ≤ Δaibi ≤ (1− aik )
k=1

n∑  κmax .

Expressing these element-wise inequalities in matrix form yields,

 κmin (e − Ae) ≤ Δ ≤ (e − Ae) κmax ,

or                                       κmin (I − A) e  ≤ (I − A)κ − e ≤ (I − A) e κmax .

Now if x is a non-negative vector (x ≥ 0) and B is nonnegative matrix then Bx ≥ 0. Note
that A  is a sub-stochastic matrix  (since there is at least one pair of states (c, d)
∉{(a1,b1), …, (an,bn)} with αai ,bi

(c,d ) > 0 for at least one i, so that there is at least one row of
A with a row-sum less than 1). Consequently A has a maximal eigenvalue less than 1.
This implies that Ak

k=o

∞∑ = (I − A)−1with (I − A)−1non-singular. Consequently

(I − A)−1 ≥ 0 , (see [4, Theorem 4.6.6]), leading to

 (I − A)−1e +κmine ≤κ    ≤ (I − A)−1e +κmaxe ,

which leads, in element form, to Eqn.(3.30).
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Now α i , j
(r ,s )

r< s,(r ,s )≠(a1 ,b1 ),...,(an ,bn )
∑∑ = 1− α i, j

(ar ,br )
r=1

n∑ − µij  so that for ( i,j) ∉{(a1,b1),…,

(an,bn)}

1− α i, j
(ar ,br )

r=1

n∑ − µij( )κmin ≤ Δij ≤ 1− α i , j
(ar ,br )

r=1

n∑ − µij( )κmax .

From Eqn.(3.34), for (i,j) ∉{(a1,b1), …, (an,bn)},

1+ α i, j
(ar ,br )κ arbrr=1

n∑ + 1− α i, j
(ar ,br )

r=1

n∑ − µij( )κmin ≤κ ij ≤ 1+ α i , j
(ar ,br )κ arbrr=1

n∑ + 1− α i , j
(ar ,br )

r=1

n∑ − µij( )κmax .

Now, from Eqn.(3.30),

1+ α i, j
(ar ,br ) Arss=1

n∑ +κmin( )r=1

n∑ + 1− α i , j
(ar ,br )

r=1

n∑ − µij( )κmin ≤κ ij ,

and

κ ij ≤ 1+ α i, j
(ar ,br ) Arss=1

n∑ +κmax( )r=1

n∑ + 1− α i, j
(ar ,br )

r=1

n∑ − µij( )κmax .

From Eqn.(3.29) we require, for the lower bound,

κmin ≤ 1+ α i, j
(ar ,br )

r=1

n∑( ) Arss=1

n∑ +κmin( ) + 1− α i , j
(ar ,br )

r=1

n∑ − µij( )κmin ,

implying, for all (i, j) ∉{(a1, b1), …, (an, bn)}, that µijκmin ≤ 1+ Arsα i , j
(ar ,br )

s=1

n∑r=1

n∑ ≡ λij ,
leading to  the first bound in (3.31) and expression (3.22).
Similarly for the upper bound we require, for all (i, j) ∉{(a1, b1), …, (an, bn)},
λij = 1+ Arsα i , j

(ar ,br )
s=1

n∑r=1

n∑ ≤ µijκmax  leading to  the second bound in (3.31).  �

Note that Theorem 2 follows from Theorem 4 when n = 1 with (a1, b1) = (a, b)
where A = a11[ ] = αa1 ,b1

(a1 ,b1 )⎡⎣ ⎤⎦ = αa ,b
(a,b )⎡⎣ ⎤⎦ ,  A11[ ] = (I − A)−1 = (1−αa,b

(a ,b ) )−1.   

Similarly, Theorem 3 follows from Theorem 4 when n = 2 with (a1, b1) = (a, b), (a2, b2)

= (c, d) where A =
a11 a12
a21 a22
⎡
⎣
⎢

⎤
⎦
⎥ =

αa1 ,b1
(a1 ,b1 ) αa1 ,b1

(a2 ,b2 )

αa2 ,b2
(a1 ,b1 ) αa2 ,b2

(a2 ,b2 )

⎡

⎣
⎢

⎤

⎦
⎥ =

αa,b
(a,b) αa,b

(c,d )

α c,d
(a,b) α c,d

(c,d )

⎡

⎣
⎢

⎤

⎦
⎥

and Ars[ ] = (I − A)−1 = A11 A12
A21 A22
⎡
⎣
⎢

⎤
⎦
⎥ =

1
τ 2

1−α c,d
(c,d ) αa,b

(c,d )

α c,d
(a,b) 1−αa ,b

(a ,b )

⎡

⎣
⎢

⎤

⎦
⎥  with

τ 2 = det(I − A) = (1−αa,b
(a,b) )(1−α c,d

(c,d ) ) −αa,b
(c,d )α c,d

(a,b) .
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4.  Special  cases

Example 1.  Two-state Markov chains

Let 
  

P =
p

11
p

12

p
21

p
22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

1− a a

b 1− b

⎡

⎣
⎢

⎤

⎦
⎥ , (0 < a ≤ 1, 0 < b ≤ 1), be the transition matrix of a

two-state Markov chain with state space S = {1, 2}.   Let d = 1 – a – b.

If – 1< d < 1, the Markov chain is regular with a unique stationary distribution given by

                                                   
  
π

1
=

b

a + b
,  π

2
=

a

a + b
.

Note that µ12 = µ21 = p11p21 + p12 p22 = (1− a)b + a(1− b) = a + b − 2ab ≡ µ.
.
Note that µ ≠ 0, since if µ = 0 then a(1− b) + b(1− a) = 0.  i.e. a(1− b) = 0  and
(1− a)b = 0.  Thus either (i) a = 0 and b = 0 or (ii) a = 1 and b = 1. Case (i) is
impossible since this implies both states are absorbing, while case 2 implies the chain is
periodic period 2. In both cases coupling never occurs.

 In this special case, expressions for the expected number of trials to coupling can be
found explicitly since the solution of equations (2.3) for, (I −Q)κ (C) = e,  is easily
effected with

κ12
(C ) =κ 21

(C ) =
1

(a + b − 2ab)
=

1
µ
=  κmin =κmax .

Further it was shown in [2] that

τC ,1 =
a

(a + b)(a + b − 2ab)
,  implying τC ,1 =

π 2

µ
= (1− π1)κmin = (1− π1)κmax

 and τC ,2 =
b

(a + b)(a + b − 2ab)
=
π1
µ

= (1− π 2 )κmin = (1− π 2 )κmax .

Thus the inequalities (3.2) and (3.8) are in fact equalities, with
(1− π i )κmin = τC ,i = (1− π i )κmax .                                              

Example 2.  Three-state Markov chains (Explicit solutions of the κ ij ).

Let P =
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
1− b − c b c

d 1− d − f f
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 be the transition matrix of

a Markov chain with state space S = {1, 2, 3}.
Note that 0 < b + c ≤ 1, 0 < d + f ≤ 1 and 0 < g + h ≤ 1. Let
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Δ1 =  p23p31 + p21p32 + p21p31 = fg + dh + dg,
Δ2  =  p31p12 + p32 p13 + p32 p12 = gb + hc + hb,
Δ3 = p12 p23 + p13p21 + p13p23 =  bf + cd + cf ,
Δ =  Δ1 + Δ2 + Δ3 =  fg + dh + dg + gb + hc + hb + bf + cd + cf .

The Markov chain, with the above transition matrix, is irreducible (and hence a
stationary distribution exists) if and only if Δ1 > 0, Δ 2 > 0, Δ3 > 0, with stationary
probability vector

(π1,π 2,  π3) =
1
Δ
(Δ1,Δ2 ,Δ3 ) .                                    (4.1)

Observe that
µ12 = µ21 = p11p21 + p12 p22 + p13p23 = (1− b − c)d + b(1− d − f ) + cf = b + d − 2bd − cd − bf + cf ,
µ23 = µ32 = p21p31 + p22 p32 + p23p33 = dg + (1− d − f )h + f (1− g − h) = h + f − 2 fh − dh − fg + dg,
µ13 = µ31 = p31p11 + p32 p12 + p33p13 = g(1− b − c) + hb + (1− g − h)c = c + g − 2cg − bg − ch + bh.

Using the reduced equations (3.11) with just three parameters κ12 ,  κ13, and κ 23  yields
κ12 = 1+α1,2

(1,2)κ12 +α1,2
(1,3)κ13 +α1,2

(2,3)κ 23

κ13 = 1+α1,3
(1,2)κ12 +α1,3

(1,3)κ13 +α1,3
(2,3)κ 23

κ 23 = 1+α2,3
(1,2)κ12 +α2,3

(1,3)κ13 +α2,3
(2,3)κ 23

where α i , j
(r ,s )  = pir pjs + pjr pis. In matrix form,

1−α1,2
(1,2) −α1,2

(1,3) −α1,2
(2,3)

−α1,3
(1,2) 1−α1,3

(1,3) −α1,3
(2,3)

−α2,3
(1,2) −α2,3

(1,3) 1−α2,3
(2,3)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

κ12
κ13
κ 23

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= Bκ = e .                             (4.2)

In [2] we were unable to find compact expressions for the solutions of (4.2) in all cases
and special cases were considered. However, the structure exhibited by Eqn.(4.2) now
permits a simple solution:

First note that κ = B−1e = 1
τ 3

τ11 τ12 τ13
τ 21 τ 22 τ 23
τ 31 τ 32 τ 33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
e = 1

τ 3

τ11 + τ12 + τ13
τ 21 + τ 22 + τ 23
τ 31 + τ 32 + τ 33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

                            (4.3)

where
τ11 = (1−α1,3

(1,3) )(1−α2,3
(2,3) ) −α1,3

(2,3)α2,3
(1,3),τ12 = α1,2

(1,3)(1−α2,3
(2,3) ) +α1,2

(2,3)α2,3
(1,3),

τ13 = α1,2
(1,3)α1,3

(2,3) +α1,2
(2,3)(1−α1,3

(1,3) ),τ 21 = α1,3
(1,2) (1−α2,3

(2,3) ) +α1,3
(2,3)α2,3

(1,2),

τ 22 = (1−α1,2
(1,2) )(1−α2,3

(2,3) ) −α2,3
(1,2)α1,2

(2,3),τ 23 = (1−α1,2
(1,2) )α1,3

(2,3) +α1,2
(2,3)α1,3

(1,2)

τ 31 = α1,3
(1,2)α2,3

(1,3) + (1−α1,3
(1,3) )α2,3

(1,2),τ 32 = (1−α1,2
(1,2) )α2,3

(1,3) +α1,2
(1,3)α2,3

(1,2),

τ 33 = (1−α1,2
(1,2) )(1−α1,3

(1,3) ) −α1,2
(1,3)α1,3

(1,2) ,



 14                                                                                                              R.L.I.M.S. Vol. 12, February 2008

and det(B) = τ 3  with the following equivalent forms:
τ 3 = (1−α1,2

(1,2) )τ11 −α1,2
(1,3)τ 21 −α1,2

(2,3)τ 31 = −α1,3
(1,2)τ12 + (1−α1,3

(1,3) )τ 22 −α1,3
(2,3)τ 32,

  = −α2,3
(1,2)τ13 −α2,3

(1,3)τ 23 + (1−α2,3
(2,3) )τ 33.   

Using the observations, from Eqns.(3.12), that
α1,2
(1,2) +α1,2

(1,3) +α1,2
(2,3) + µ1,2 = 1,α1,3

(1,2) +α1,3
(1,3) +α1,3

(2,3) + µ13 = 1,α2,3
(1,2) +α2,3

(1,3) +α2,3
(2,3) + µ23 = 1,(4.4)

it can be shown that τ3 can be re-expressed as one of the following equivalent forms
τ 3 = µ12τ11 + µ13τ12 + µ23τ13 = µ12τ 21 + µ13τ 22 + µ23τ 23 = µ12τ 31 + µ13τ 32 + µ23τ 33.

Thus from Eqn.(4.3),

κ12 =
τ11 + τ12 + τ13

τ 3

,  κ13 =
τ 21 + τ 22 + τ 23

τ 3

,  κ 23 =
τ 31 + τ 32 + τ 33

τ 3

.                      (4.5)

Further τC ,1 = π 2κ12 + π 3κ13,  τC ,2 = π1κ12 + π 3κ 23,  τC ,3 = π1κ13 + π 2κ 23  so that

τC ,1 =
Δ2κ12 + Δ3κ13

Δ
,  τC ,2 =

Δ1κ12 + Δ3κ 23

Δ
,  τC ,3 =

Δ1κ13 + Δ2κ 23

Δ
 implying

τC ,1 =
Δ2 (τ11 + τ12 + τ13) + Δ3(τ 21 + τ 22 + τ 23)

Δτ 3

,  

τC ,2 =
Δ1(τ11 + τ12 + τ13) + Δ3(τ 31 + τ 32 + τ 33)

Δτ 3

,  

τC ,3 =
Δ1(τ 21 + τ 22 + τ 23) + Δ2 (τ 31 + τ 32 + τ 33)

Δτ 3
.   �

We now explore the derivation of simple bounds for κ ij  utilising Theorems 1, 2 and 3
for the special cases considered in [2] where coupling occurred. We initially restrict
attention to the cases where all the µij are positive (Example 3). Other cases when
µ12 = 0,  µ13 > 0,  µ23 > 0,  (Example 4) and µ12 = 0,  µ13 = 0,  µ23 > 0,  (Example 5)
follow after Example 3.

Example 3.  Three-state Markov chains (with all µij positive.).
First observe that in Example 2, Case 1 (when p12 = p23 = p31 = 1) and Case 2 (when p12
= p32 =1, p21 + p23 = 1) each involve a periodic Markov chain (period 3 for Case 1 and
period 2 for Case 2). In Case 1 coupling either occurs initially or never occurs. In Case
2 coupling either occurs initially, after one step, or never occurs. For coupling to occur
with probability one we need to restrict attention to regular (irreducible, aperiodic,
finite) Markov chains. Thus we omit further consideration of these two cases.

Case 3:  “Constant movement” with p11 = p22 = p33 = 0.

The transition matrix P =
0 b 1− b

1− f 0 f
g 1− g 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

0 p12 p13
p21 0 p23
p31 p32 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,
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with 0 < b < 1, 0 < f < 1, 0 < g < 1. It is easily seen thatµ12 = p13p23 = (1− b) f ,
µ23 = p21p31 = (1− f )g, and µ13 = p32 p12 = b(1− g) . Under the stated conditions, all of
these parameters are positive so that the conditions of Theorem 1 are satisfied.
With µmin = min{(1− b) f ,(1− f )g,b(1− g)}, andµmax = max{(1− b) f ,(1− f )g,b(1− g)} ,

Theorem 1 leads to  κmin =
1

µmax

≤κ ij ≤κmax =
1

µmin

.

Since Δ1 ≡ p23p31 + p21p32 + p21p31  = fg + 1 – f = 1 – f(1 – g),
 Δ2 ≡ p31p12  + p32p13 + p32p12  = gb +1 – g = 1 – g(1 – b),

Δ3 ≡ p12p23 + p13p21 + p13p23   = bf +1 – b = 1 – b(1 – f),
Δ ≡ Δ1 + Δ2 + Δ3 = 3  – f(1 – g) – g(1 – b) – b(1 – f).

Using (4.1), the stationary probabilities can be derived. Bounds on the expected
coupling times follow from application of Eqn. (3.8) yielding

2 − g(1− b) − b(1− f )
[3− f (1− g) − g(1− b) − b(1− f )]µmax

≤ τC ,1 ≤
2 − g(1− b) − b(1− f )

[3− f (1− g) − g(1− b) − b(1− f )]µmin
,

2 − f (1− g) − b(1− f )
[3− f (1− g) − g(1− b) − b(1− f )]µmax

≤ τC ,2 ≤
2 − f (1− g) − b(1− f )

[3− f (1− g) − g(1− b) − b(1− f )]µmin
,

2 − f (1− g) − g(1− b)
[3− f (1− g) − g(1− b) − b(1− f )]µmax

≤ τC ,3 ≤
2 − f (1− g) − g(1− b)

[3− f (1− g) − g(1− b) − b(1− f )]µmin
.

Computation of τC,i, for all values of the parameters in [2]  showed that

 2.6667 ≤ min
1≤ i≤3

τC ,i < ∞ .

For all combinations of b = f = g, the ratios rL ,i =
lower bound of τC ,i

τC ,i

 and

rU ,i  =
upper bound of τC ,i

τC ,i

 are both equal to 1, leading to the result that

lower bound of τC ,i = τC ,i = upper bound of τC ,i . This is not equivalent to the
independence condition implied under Corollary 1.2 but arises due to the symmetry of
the transition matrix in each situation, with the stationary probabilities all equal to 1/3.
Taking all combinations of b, f, and g in steps of 0.1 between 0.1 and 0.9 we achieve
considerable variability between the ratios.
 In particular, 0.097 ≤ rL ,i ≤ 1  with the minimal ratio being achieved at (b, c, f)  =
(0.1, 0.1, 0.9) and (0.9, 0.1, 0.9) for rL ,1 , at (0.9, 0.1, 0.1) and (0.9, 0.9, 0.1) for rL ,2 , and
at (0.1, 0.9, 0.1) and (0.1, 0.9, 0.9) for rL ,3 .

Further, 1 ≤ rU ,i ≤ 14.063  with the maximal ratio being achieved at (b, c, f)  =
(0.5, 0.9, 0.1), for for rU ,1 , at (0.1, 0.5, 0.9) for rU ,2 , and at (0.9, 0.1, 0.5) for rU ,3 .
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Case 4:  “Independent trials”

For this case P =
p1 p2 p3
p1 p2 p3
p1 p2 p3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,  so that  pij = pj for all i, j implying that the Markov

chain is equivalent to independent trials on the state space S = {1, 2, 3}.
For all i ≠ j, µij = p1

2 + p2
2 + p3

2 = 1− 2p1p2 − 2p2p3 − 2p3p1 .
Now Δ1 = p1, Δ2 = p2, Δ3 = p3, Δ = p1 + p2 + p3 = 1, implying π1 = p1,  π 2 = p2 ,  π 3 = p3 .

 For all i, it was shown in [2] that τC ,i =
1− pi

1− 2p1p2 − 2p1p3 − 2p2p3
=
1− π i

µmin
=
1− π i

µmax
.

Thus each inequality in (3.8) is in fact an equality, with the upper and lower bounds
coinciding, as observed in Corollary 1.2.

Case 5: “Cyclic drift “ p13 = p21 = p32 = 0 with

P =
p11 p12 0
0 p22 p23
p31 0 p33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
1− b b 0
0 1− f f
g 0 1− g

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

For this case µ12 = p12 p22 = b(1− f ),  µ23 = p23p33 = f (1− g),  µ13 = p31p11 = g(1− b), with
µmin = min{b(1− f ), f (1− g),g(1− b)} and µmax = max{b(1− f ), f (1− g),g(1− b)}.
Thus for 0 < b < 1, 0 < f <1, 0 < g < 1, all the µij parameters are positive and the results
of Theorem 1 can be applied.

Further Δ1 = fg, Δ2 = gb, Δ3 = bf, Δ = fg + gb +bf  so that expressions for the stationary
probabilities follow from Eqn.(4.1). Using Eqn.(3.8) this leads to the following bounds
on the expected times to coupling:

b(g + f )
[ fg + gb + bf ]µmax

≤ τC ,1 ≤
b(g + f )

[ fg + gb + bf ]µmin
,

f (g + b)
[ fg + gb + bf ]µmax

≤ τC ,2 ≤
f (g + b)

[ fg + gb + bf ]µmin
,

g( f + b)
[ fg + gb + bf ]µmax

≤ τC ,3 ≤
g( f + b)

[ fg + gb + bf ]µmin
.

As for Case 3, we explore the ratios rL ,i =
lower bound of τC ,i

τC ,i

 and rU ,i

=
upper bound of τC ,i

τC ,i

.
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When b = f = g, both ratios are equal to 1, leading to the lower bound of τC ,i = τC ,i  =
upper bound of τC ,i . As for Case 3, this is not equivalent to the independence condition
implied under Corollary 1.2 but arises due to the symmetry of the transition matrix in
each situation with the stationary probabilities all equal to 1/3.
Taking all combinations of b, f, and g in steps of 0.1 between 0.1 and 0.9 we achieve
less variability between the lower ratios rL ,i , but much more variability between the
upper ratios rU ,i  than was present in Case 3.

In particular, 0.185 ≤ rL ,i ≤ 1  with the minimal ratio being achieved at (b, c, f) =
(0.1, 0.9, 0.1) for rL ,1 , at (0.1, 0.1, 0.9) for rL ,2 , and (0.9, 0.1, 0.1) for rL ,3 .

Further1 ≤ rU ,i ≤ 67.69  with the maximal ratio being achieved at (b, c, f)  =

(0.9, 0.1, 0.9) for rU ,1 , at (0.9, 0.9, 0.1) for rU ,2 , and (0.1, 0.9, 0.9) for rU ,3 .
From Eqn.(3.9) simple upper bounds, valid for all i, can be given as

τC ,i <
1

µmin
=

1
min(p12 p22 , p11p31, p23p33 )

=
1

min(b(1− f ), f (1− g),g(1− b))
.

Case 6: “Constant probability state selection”

In this case, withP =

1− a a
2

a
2

b
2

1− b b
2

c
2

c
2

1− c

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,  (0 < a ≤1, 0 < b ≤1, 0 < c ≤ 1.)

Observe that

µ12 =
2(a + b) − 3ab

4
,  µ13 =

2(a + c) − 3ac
4

,  µ23 =
2(b + c) − 3bc

4
with

µmin = min 2(a + b) − 3ab,2(b + c) − 3bc,2(a + c) − 3ac
4

⎛
⎝⎜

⎞
⎠⎟

,

µmax = max 2(a + b) − 3ab,2(b + c) − 3bc,2(a + c) − 3ac
4

⎛
⎝⎜

⎞
⎠⎟

.

Further Δ1 =
3bc
4

,  Δ2 =
3ac
4

,  Δ3 =  3ab
4

 and thus Δ =  3(bc + ac + ab)
4

.  This leads to

expressions for the stationary probabilities and hence to the following bounds for the
τC ,i :
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a(b + c)
[bc + ac + ab]µmax

≤ τC ,1 ≤
a(b + c)

[bc + ac + ab]µmin
,

b(a + c)
[bc + ac + ab]µmax

≤ τC ,2 ≤
b(a + c)

[bc + ac + ab]µmin
,

c(a + b)
[bc + ac + ab]µmax

≤ τC ,3 ≤
c(a + b)

[bc + ac + ab]µmin
.

Paralleling the procedures of cases 3 and 5 we obtain the following observations for the
ratios rL ,i  and rU ,i . Firstly both rL ,i = rU ,i =1, implying equality of the lower and upper
bounds of τC ,i , and equal to τC ,i  occur at all cases when a = b = c , with the stationary
probabilities all the same. In this case there is much less variability between the actual
values of the expected times to coupling and the associated lower and upper bounds.

In particular it can be shown that for all values of (a, b, c) in the ranges 0.1 (0.1) 1.0,
0.277 ≤ rL ,i ≤ 1  and 1 ≤ rU ,i ≤ 2.17 . The lower ratio rL ,i = 0.277 occurs at the following
sets of values of (a, b, c):  (0.1, 0.1, 1) and (0.1, 1, 0.1) for rL ,1 , (0.1, 0.1, 1) and (1, 0.1,
0.1) for rL ,2 , and  (0.1, 1, 0.1) and (1, 0.1, 0.1) for rL ,3 . The upper ratio rU ,i = 2.17
occurs at (a, b, c) = (1, 0.1, 0.1) for rU ,1 , (0.1, 1, 0.1) for rU ,2 , and (0.1, 0.1, 1) for rU ,3 .

These bounds, especially the upper bounds, are much tighter than those exhibited in
Cases 3 and 4, highlighting the efficacy of the procedure of Theorem 1 when the
transition matrix is a positive matrix.

Example 4.  Three-state Markov chains (µ12 = 0, µ13 > 0, µ23 > 0).

Let P =
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
1− b − c b c

d 1− d − f f
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 be the transition matrix of

a Markov chain with state space S = {1, 2, 3}.
Note that 0 < b + c ≤ 1, 0 < d + f ≤ 1 and 0 < g + h ≤ 1.
Observe that µ12 = p11p21 + p12 p22 + p13p23 = 0  implies p11p21 = 0,  p12 p22 = 0,  and
p13p23 = 0.

Thus eight cases need to be considered:
(i)    p11 = 0,  p12 = 0,  and p13 = 0,  (ii)   p11 = 0,  p12 = 0,  and p23 = 0,
(iii)  p11 = 0,  p22 = 0,  and p13 = 0,  (iv)  p11 = 0,  p22 = 0,  and p23 = 0,
(v)   p21 = 0,  p12 = 0,  and p13 = 0,   (vi)  p21 = 0,  p12 = 0,  and p23 = 0,
(vii) p21 = 0,  p22 = 0,  and p13 = 0,   (iix) p21 = 0,  p22 = 0,  and p23 = 0.
Of these cases (i) and (iix) are impossible since p11 + p12 + p13  and p21 + p22 + p23  must
be 1. Also cases (v) and (vi) are impossible (since the above restrictions would imply,
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respectively, that p11 = 1and p22 = 1  and hence, respectively, that states 1 and 2, are
absorbing.)
This leads to four remaining possibilities (with (ii), (iii), (iv), (vii) relabelled as (a), (b),
(c) (d))
(a)   p11 = 0,  p12 = 0,  and p23 = 0,  with p13 = 1,  (b)  p11 = 0,  p22 = 0,  and p13 = 0,  with p12 = 1,
(c)  p11 = 0,  p22 = 0,  and p23 = 0,with p21 = 1,   (d) p21 = 0,  p22 = 0,  and p13 = 0,  with p23 = 1. 

For case (a):Pa =
0 0 1
d 1− d 0
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,withµ13 = 1− g − h > 0,  µ23 = dg + (1− d)h > 0;

α1,2
(1,2) = 0,  α1,3

(1,2) = 0,  α2,3
(1,2) = dh + (1− d)g, and 0 < d ≤ 1, 0 ≤ g<1,0 <h <1,0 < g + h < 1.

For case (b): Pb =
0 1 0
d 0 1− d
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, with µ13 = h > 0,  µ23 = dg + (1− d)(1− g − h) > 0;

α1,2
(1,2) = d,  α1,3

(1,2) = g,  α2,3
(1,2) = dh,  and 0 ≤ d < 1, 0 ≤ g < 1 , 0 < h < 1, 0 < g + h ≤ 1.

For case (c): Pc =
0 b 1− b
1 0 0
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, with µ13 = bh + (1− b)(1− g − h) > 0,  µ23 = g > 0;

α1,2
(1,2) = b,  α1,3

(1,2) = bg,  α2,3
(1,2) = h,  and 0 ≤ b < 1, 0 < g < 1, 0 ≤  h < 1, 0 < g + h ≤ 1.

For case (d): Pd =
1− b b 0
0 0 1
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

with µ13 = (1− b)g + bh > 0,  µ23 = 1− g − h > 0;

α1,2
(1,2) = 0,  α1,3

(1,2) = (1− b)h,  α2,3
(1,2) = 0,  and 0 < b ≤ 1, 0 < g < 1, 0  ≤ h  <1, 0 < g + h < 1.

Note that there is some symmetry between cases (a) and (d), and between cases (b) and
(c).
Case (d) converts to Case (a) by relabelling the states {1, 2, 3} as {2, 1, 3} and
changing the parameters (b, g, h) to (d, h, g). This same procedure will also convert
Case (c) to Case (b).
From Theorem 2,

1
1−α1,2

(1,2) +κmin ≤κ12 ≤
1

1−α1,2
(1,2) +κmax , κmin ≤κ13 ≤κmax, κmin ≤κ 23 ≤κmax .

κmin = min
1
µ13

1+
α1,3
(1,2)

1−α1,2,
(1,2 )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, 1
µ23

1+
α2,3
(1,2)

1−α1,2
(1,2)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  and

κmax = max
1
µ13

1+
α1,3
(1,2)

1−α1,2,
(1,2)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, 1
µ23

1+
α2,3
(1,2)

1−α1,2
(1,2)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.
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These expressions, with substitution as above for the special cases, together with
explicit calculations for κ ij  provided by equations (4.5) lead to the following
observations.

For each of the following parameter selections:  case (a) with (d, g, h) = (1, 0.3, 0.5),
case (b) with (d, g, h) = (0, 0.5, 0.3), (0.6, 0.4, 0.4), case (c) with (b, g, h) = (0, 0.3, 0.5),
(0.6, 0.4, 0.4), and case (d) with (b, g, h) = (1, 0.5, 0.3) the lower bound for each κ ij =
upper bound for κ ij = exact value of κ ij , providing an effective way of evaluating κ ij .
Further, at each of the above parameter selections, for i = 1, 2, 3, the lower bound for
each τC ,i = upper bound for τC ,i = exact value of τC ,i .

For each (i, j) with i < j, let sL ,ij =
lower  bound  of  κ ij

κ ij

 and sU ,ij =
upper  bound  of  κ ij

κ ij

,

and for i = 1, 2, 3, let rL ,i =
lower  bound  of  τC ,i

τC ,i

 and rU ,i =
upper  bound  of  τC ,i

τC ,i

.

In every case sL ,ij ≤ 1 , rL ,i ≤ 1 , sU ,ij ≥ 1  and rU ,i ≤ 1.

Minimal extreme values, with the parameters taking increments of 0.1 in the restricted
ranges for each case, occur at the following parameter selections:
Case (a): sL ,12 = 0.305,  sL,23 = 0.173,  rL,2 = rL,3 = 0.186,  at (d, g, h) = (0.1, 0, 0.1),
sL ,13 = 0.223 and rL ,1 = 0.234  at (d, g, h) = (1, 0.8, 0.1).

Case (b): sL ,12 = sL ,13 = rL,1 = rL ,2 = 0.100,  sL,23 = rL,3 = 0.011  at (d, g, h) = (0.9, 0, 0.9).

Case (c): sL ,12 = sL ,23 = rL ,1 = rL ,3 = 0.100,  sL,13 = rL,2 = 0.011  at (b, g, h) = (0.9, 0.9, 0).

Case (d): sL ,12 = 0.305, sL,13 = 0.173,  τC ,1 = rL ,3 = 0.186  at (b, g, h) = (0.1, 0.1, 0),
sL ,23 = 0.223 and rL ,2 = 0.234  at (b, g, h) = (1, 0.1, 0.8).

Maximal extreme values, with the parameters have increments of 0.1 in the restricted
ranges for each case, occur at the following parameter selections:
Case (a): sU ,12 = 46.54,  sU ,13 = 87.62,  sU ,23 = 44.67,  rU ,1 = 80.46,  rU ,2 = 44.84,
rU ,3 = 58.18  at (d, g, h) = (0.9, 0, 0.1).

Case (b): sU ,12 = rU ,1 = 82.90,  sU ,13 = rU ,2 = 81.99,  at (d, g, h) = (0.9, 0, 0.9),

sU ,23 = rU ,3 = 29.25  at (d, g, h) = (0.9, 0.9, 0.1).

Case (c): sU ,12 = rU ,1 = 82.90,  sU ,23 = rU ,3 = 81.99,  at (b, g, h) = (0.9, 0.9, 0),

sU ,13 = rU ,2 = 29.25  at (b, g, h) = (0.9, 0.1, 0.9).

Case (d):  sU ,12 = 46.54,  sU ,13 = 44.67,  sU ,23 = 87.62,rU ,1 = 44.84,  rU ,2 = 80.46,
rU ,3 = 58.18  at (b, g, h) = (0.9, 0.1, 0).
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These extremal ratios for the lower bound,(resp. the upper bound) are in many instances
smaller (resp. larger) that those experienced when the µij are all positive.

   Example 5.  Three-state Markov chains (µ12 = 0, µ13 = 0, µ23 > 0,)

Let P =
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
1− b − c b c

d 1− d − f f
g h 1− g − h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 be the transition matrix of

a Markov chain with state space S = {1, 2, 3}.
Note that 0 < b + c ≤ 1, 0 < d + f ≤ 1 and 0 < g + h ≤ 1.
Consider the four possibilities from the µ12 = 0  cases:
(a)  p11 = 0,  p12 = 0,  and p23 = 0,  with p13 = 1,  
(b)  p11 = 0,  p22 = 0,  and p13 = 0,  with p12 = 1,
(c)  p11 = 0,  p22 = 0,  and p23 = 0,with p21 = 1,   
(d) p21 = 0,  p22 = 0,  and p13 = 0,  with p23 = 1. 
For case (a): µ13 = 1− g − h = 0 ⇒ h = 1− g,  µ23 = dg + (1− d)(1− g) > 0 ,

Pa =
0 0 1
d 1− d 0
g 1− g 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 with 0 < d ≤ 1, 0 ≤ g <1, 0 < h = 1 – g ≤ 1.

For case (b): with µ13 = 0 ⇒ h = 0,  µ23 = dg + (1− d)(1− g) > 0 ,

Pb =
0 1 0
d 0 1− d
g 0 1− g

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 with  0 ≤  d < 1, 0 < g ≤ 1, h = 0.

For case (c): µ13 = bh + (1− b)(1− g − h) = 0,  µ23 = g > 0 , implies bh = 0 and
(1 – b)(1 – g – h) = 0. This leads to four possibilities: b = 0 and b = 1 (impossible);
b = 0 and g + h = 1; h = 0 and b = 1 (which is impossible since state 3 is then transient);
h = 0 and g = 1 (which doesn’t lead to coupling since the chain is then periodic with
period 2). Thus there is only one possibility:

Pc =
0 0 1
1 0 0
g 1− g 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 with 0 < g < 1, 0 < h = 1 – g < 1, (which is a special case of ( a)

with d = 1).
For case (d): µ13 = (1− b)g + bh = 0,  µ23 = 1− g − h > 0  implies (1 – b)g and bh = 0.
Thus one of four possibilities b = 1 and g = 0 (impossible since state 1 is then transient);
b = 1 and  h = 0; g = 0 and b = 0 (impossible since state 1 is then absorbing); g = 0 and
h = 1  (which is impossible since state 1 is then transient). Thus there is only one
possibility:
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Pd =
0 1 0
0 0 1
g 0 1− g

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 with b = 1, 0 < g < 1, h = 0,   (which is a special case of ( b) with d

= 0).

Thus effectively there are only two non trivial cases to consider – case (a) with 0 ≤ d ≤ 1,
0 < g ≤ 1 and case (b), with 0 ≤ d ≤ 1, 0 < g ≤ 1. (The symmetry, as present in Example 4,
effectively reduces this to one case.)
In computing the bounds for the special cases above, for κ12, κ13 and κ23, using the

procedure of Theorem 3, first observe that κmin =  
λ2,3

(1,2;1,3)

µ23

= κmax
, leading to

κ 23 =
λ2,3

(1,2;1,3)

µ23

,  κ12 =
1+α1,2

(1,3) −α1,3
(1,3)

τ 2

+
λ2,3

(1,2;1,3)

µ23

,  κ13 =
1+α1,3

(1,2) −α1,2
(1,2)

τ 2

+
λ2,3

(1,2;1,3)

µ23

,

where       λ2,3(1,2;1,3) = 1+
α2,3
(1,2) (1+α1,2

(1,3) −α1,3
(1,3) ) +α2,3

(1,3)(1+α1,3
(1,2) −α1,2

(1,2) )
τ 2

,

with                τ 2 = (1−α1,2(1,2) )(1−α1,3(1,3) ) −α1,2
(1,3)α1,3

(1,2) .
Simplification using the observations from Eqn. (4.4), that since µ12 = 0 and µ13 = 0,
α1,2

(1,2) +α1,2
(1,3) +α1,2

(2,3) = 1,α1,3
(1,2) +α1,3

(1,3) +α1,3
(2,3) = 1,  α2,3

(1,2) +α2,3
(1,3) +α2,3

(2,3) + µ23 = 1.
Further, in cases (a) and (c):
α1,2

(1,2) = 0,  α1,2
(1,3) +α1,2

(2,3) = 1,  α1,3
(1,2) = 0,  α1,3

(1,3) +α1,3
(2,3) = 1,  α2,3

(1,3) = 0,  α2,3
(2,3) = 0,

τ 2 = α1,3
(2,3) , λ23(1,2;1,3) =

α1,3
(2,3) +α2,3

(1,2)(1+α1,2
(1,3) −α1,3

(1,3 )
α1,3
(2,3) ,

while in cases (b) and (d):
α12

(1,3) = 0,  α12
(1,2) +α12

(2,3) = 1,  α13
(1,3) = 0,  α13

(1,2) +α13
(2,3) = 1,  α23

(1,2) = 0,α23
(2,3) = 0,  

τ 2 = α1,2
(2,3) , λ2,3(1,2;1,3) =

α1,2
(2,3) +α2,3

(1,2) +α2,3
(1,3)(1+α1,3

(1,2) −α1,2
(1,2) )

α1,2
(2,3) .

Thus in this example, all the bounds are exact, with agreement to the explicit solutions
of equations (4.1) being obtained as in Example 3. i.e. κ ij (exact) =κ ij (bound) leading to
the ratios

 rL ,i =
lower  bound  of  τC ,i

τC ,i

=
upper  bound  of  τC ,i

τC ,i

= rU ,i  = 1, in each case.

The computation procedure of Theorem 3 is thus an alternative procedure for evaluating
the κij in the case of a three-state chain when any two of the parameters µab and µcd are
both zero.
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