
Res. Lett. Inf. Math. Sci., 2006, Vol.1, pp1-16

Available online at http://iims.massey.ac.nz/research/letters/
1

64-Bit Architectures and Compute

Clusters for High Performance

Simulations

K.A. Hawick, H.A.James & C.J.Scogings

Institute of Information & Mathematical Sciences
Massey University at Albany, Auckland, New Zealand.

Simulation of large complex systems remains one of the most demanding
of high performance computer systems both in terms of raw compute per-
formance and efficient memory management. Recent availability of 64-bit
architectures has opened up the possibilities of commodity computers access-
ing more than the 4 Gigabyte memory limit previously enforced by 32-bit
addressing. We report on some performance measurements we have made on
two 64-bit architectures and their consequences for some high performance
simulations. We discuss performance of our codes for simulations of artificial
life models; computational physics models of point particles on lattices; and
with interacting clusters of particles. We have summarised pertinent features
of these codes into benchmark kernels which we discuss in the context of well-
known benchmark kernels of the 32-bit era. We report on how these these
findings were useful in the context of designing 64-bit compute clusters for
high-performance simulations.

1 Introduction

We are engaged in a number of computer simulation projects , modelling various
physical systems using stochastic and other techniques. A particular issue in ex-
trapolating behaviour of a simulated system to physically realistic systems sizes and
thermodynamic limits is in simulating as large a system as is possible.

Simulated system sizes are generally limited in practice by three effects.

Firstly it may simply be infeasible to run a simulation program that has available
to it enough memory to hold all the simulated variables. This is quite common

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

https://core.ac.uk/display/148639203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 K.A. Hawick, H.A.James & C.J.Scogings

for dilute lattice based models where for simulation code simplicity a great deal of
empty lattice sites must be held in memory. This limit is simply one of insufficient
computer memory.

Secondly it may not be feasible to reach useful run lengths (for attainment of equi-
librium properties for example) for system sizes above a certain size. In this case,
we may have enough computer memory but not a fast enough computer processor
to usefully service a simulated system that occupies all our memory. In such cases
we must deliberately scale down our ambitions. This is the speed limited case.

Thirdly we may arrive at a more complicated limiting situation. We may have
found some algorithmic techniques to speed up our simulation by avoiding certain re-
computations. Such lookup table techniques are useful in speeding up the simulation
but inevitably use up memory. So we may be limited by a combination of processor
speed and available memory.

Often we can apply parallel processing techniques either to break down our pro-
gramme of work into separate jobs (simplest case) or to effectively add to our avail-
able memory by pooling memory that is owned by different processors (memory
sharing case) or ultimately by finding some clever and genuinely parallel algorithm
that speeds up the simulation near linearly with the number of contributing pro-
cessors. Although it is possible to develop software solutions to the management of
parallelism [4], the main obstacle is often still resource availability.

In practice, economic considerations and computer systems availability will typi-
cally govern what is possible, and we must make value judgements about what are
the most valuable simulations we might run on limited resources. We have had
some limited cycles available to us on the Helix and Double-Helix Linux Cluster
Supercomputers. In this paper we describe some ideas, techniques and quantitative
experiments with different architectures to determine the capabilities and value of
64-bit processor architectures, and in particular the capabilities available to us for
large memory simulations.

As part of this work we have constructed a pilot cluster using Apple G5 dual proces-
sor compute nodes with large amounts of memory per node. Of particular interest
to us was to study the performance and ease of use of memory addresses above the
conventional 4Gigabyte limit imposed by 32-bit addressing.

In this paper we describe the installation and configuration of the “Monte” cluster
(section 2), and how we have used it for a number of simulation and other high mem-
ory 64-bit applications codes (Section 5). We also studied the nodes’ performance
under various conditions, using various programming languages and compiler flags
and options (section 3). We have tried to gather together some key performance
benchmark ideas in section 4. Finally we discuss some of the issues arising from this
work and its implications for building larger 64-bit architecture clusters in section 6.

64-Bit Architectures and Compute Clusters 3

2 Building Monte

The Monte cluster was designed as a budget constrained pilot project to determine
the feasibility of using dedicated high memory compute nodes for simulations. Bud-
gets and pricing data dates very quickly and is not worth reproducing in detail here,
but the money available to us was enough for a front end node; two dual processor
compute nodes; and a housing cabinet capable of holding around 24 rack mount-
able nodes. Previously our local compute clusters were built using ordinary desktop
cases housed on cheap shelving units[2]. We were interested this time in investing
in cabinet infrastructure that would support “blade” style rack mounting units and
a cabinet on wheels that could be moved. We correctly anticipated a number of
configuration experiments and subsequent modifications that made it convenient to
house the prototype in an office environment initially, with the eventual aim of relo-
cation to a machine room environment. At the time of writing it is still convenient
and possible with good ventilation, to operate the prototype in office conditions
(despite the heat of the New Zealand summer).

Figure 1: The 24-Unit Rack cabinet containing a partially constructed “Monte”
dual-G5 compute cluster.

Figure 1 shows the prototype under construction. A slave node is pulled out of its
drawer with top case removed to show off the dual processor and memory infrastruc-
ture on the board. In general we found both the case and nodes easy to construct
and install and we were able to wire the system up with a Gigabit switching unit
and standard lab spare cables.

4 K.A. Hawick, H.A.James & C.J.Scogings

The front-end node is also rack mounted and at the time of initial installation
we built a Panther (Mac OSX 10.3) on the front end, with the two slave nodes
upgraded to Tiger OSX 10.4 subsequently. The slave nodes have been run almost
continuously generating various simulation configurations since May 2005. The front
end supports a cross-mounted file system that each slave can access and the system
is therefore well configured for independent jobs. The slave nodes have a total of 4.5
Gigabytes of memory each, with a further gigabyte available on the front end. This
is sufficient to exceed the all critical 4Gigabyte limit imposed by 32-bit addressing.
Generally we have found ourselves naturally operating individual simulations codes
that routinely exceed 2 Gigabytes of memory each. This is itself a significant figure
as many simulations use pointers and signed integers interchangeably and generally
need careful consideration if the 2GByte signed 32-bit integer is to be used safely.
The 64-bit addressing means this issues can be tackled and simulations codes tested
appropriately.

The OSX operating system is based on a BSD Unix kernel and in general we have
found it more robust than many Linux installations. It is also very reliable when
used in tandem with cross-mounted file systems from OSX running desktop systems.
Other software compatibilities have also made it an excellent platform for simulation
code development and management of the resulting data files.

The processing and network hardware has proved entirely satisfactory, but as for
any computer, its performance is only as good as is allowed by the operating system
and supported programming language compilers.

3 Compiler Options

The more recent GCC compiler suite [3] allows for vast customisation of the com-
pilation process. This is often useful when optimising programs for a particular
architecture or operating system. We have extensively used the GCC compiler opti-
misation flags in order to achieve the best possible performance out of our simulation
codes reported in section 5.

For the majority of our simulation codes we used the following compiler flags:

gcc-4.0 -O6 -arch ppc64 -mpowerpc64 -mtune=G5 -mcpu=G5 -DNDEBUG

Each of these compiler options are described below:

-O6 Optimise the output code as much as possible wrt speed

-arch ppc64 Make the target architecture 64-bit PowerPC

-mpowerpc64 Enable the G5’s native 64-bit long long support.

64-Bit Architectures and Compute Clusters 5

-mtune=G5 Tune code as optimally as possible for the G5

-mcpu=G5 Use instructions only available on G5

-DNDEBUG As a consequence of using the assert.h header file, assertion check-
ing needs to be explicitly disabled to optimise the executable

There seems to be some disagreement in the compiler community as to what the
different levels of optimisation mean. For example, in previous versions of compilers
there existed options to optimise programmes in code space; this is hardly required
in modern systems due to most processes being bottle-necked in terms of data space
rather than code space.

One way to evaluate the effectiveness of these compiler options is to time some
specific application kernels and their performance over a number of problem sizes.

4 Some Benchmark Kernels

There are some numerically intensive kernel operations that occur so frequently in
applications codes that they provide valuable benchmarks for comparing different
processor architectures and indeed operating systems and support libraries. By the
term kernel we simply mean a well defined algorithm over well known data struc-
tures that can be abstracted out of an application either as a skeletal framework
or as a callable library routine. It is obviously useful to discuss performance in
terms of well known kernels as there will be useful comparisons that users can make
against a common backdrop of experience. Kernels can typically be implemented
either as code fragments that are cut-and-pasted into an application program or as
library routines. There are issues connected with interfacing overheads and param-
eter copying and interface type mismatching that we do not wish to discuss so we
have just employed cut-and-pasted codes for the kernels we do discuss.

The three considered here (with their algorithmic complexities) are:

• Matrix inversion or solving a set of N linear equations (O(N3) with a small
prefactor)

• Finding the Eigen values and vectors of a N by N matrix (O(N3) with largish
prefactor)

• Finding the d-dimensional (Fast) Fourier Transform of a data block ((O(N log N))

The data we present are based on Java codes, so the effects of the hardware, op-
erating system and Java Virtual Machine implementation are all smeared together.
This is nevertheless useful as it gives an amalgamated effect for what we are actually

6 K.A. Hawick, H.A.James & C.J.Scogings

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

T
im

e
to

 R
un

 /
se

co
nd

s

Problem size N

’Eigen-G4-1.5GHz’
’GaussJordan-G4-1.5GHz’

’FFT2D-G4-1.5GHz’

Figure 2: The three kernel codes run on a G4 Laptop (1.5GHz) running Tiger 10.4
OSX and JDK 1.5.

interested in - namely the performance of Java application/simulation programs on
the platforms in question.

Figure 2 shows timing data for the three kernels running on a G4/1.5GHz Apple
laptop with the Tiger 10.4 Operating system and the Java Development Kit 1.5 Beta
Java Virtual Machine. The Eigen problem and Gauss Jordan elimination algorithms
settle down into distinct straight lines on the log-log plot, showing the dominant
complexity powers in the algorithms - with some initially complicated behaviour at
low problem sizes. The FFT shows the expected N log N behaviour although there
is also some exceptionally long time for the FFT algorithm as it runs out of memory
on the test platform (0.5 Gigabytes for this laptop)

Figure 3 shows all the kernel data together which is mostly useful for illustrating
the different power dominances and different regimes.

Figure 4 shows just the Eigen problem timing data and emphasises a cache size
anomaly effect on one platform as problem size hits N = 600. This data can not
be fitted with a polynomial of all positive coefficients - emphasising the non-trivial

64-Bit Architectures and Compute Clusters 7

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000

T
im

e
to

 R
un

 /
se

co
nd

s

Problem size N

’Eigen-G4-1.5GHz’
’GaussJordan-G4-1.5GHz’

’FFT2D-G4-1.5GHz’
’Eigen-G4-1.25GHz’

’GaussJordan-G4-1.25GHz’
’FFT2D-G4-1.25GHz’

’Eigen-G5-2.4GHz’
’GaussJordan-G5-2.4GHz’

’FFT2D-G5-2.4GHz’

Figure 3: The three kernels run on G4 and G5 processor combinations with Tiger
OSX and JDK 1.5, showing different limiting slopes (power laws) for the different
algorithms. The FFT data shows a marked cache/memory limiting effect at large
N as it exceeds available main memory available.

nature of cache memory effects on timing complexity.

As well as the data for G4 and G5 data, we include for comparison a run of the
Eigen problem on the Opteron 250 processor running Linux and JDK1.4. Within
the available memory range available to us, this platform does well on performance.

5 Some Application Considerations

In this section we review some of the key properties of simulation applications codes
we have developed, or are developing to make use of the Monte cluster and archi-
tectures like it.

For the most part the key consideration is access to high (greater than 2GBytes) of
memory for the simulated systems.

8 K.A. Hawick, H.A.James & C.J.Scogings

 0.1

 1

 10

 100

 1000

 10000

 100 1000

T
im

e
to

 R
un

 /
se

co
nd

s

Problem size N

’Eigen-G4-1.5GHz’
’Eigen-G4-1.25GHz’
’Eigen-G5-2.4GHz’

’Eigen-Opt250’

Figure 4: Eigen system times only on various platforms with JDK1.5, showing
slave01(G5 2.4GHz processor) anomaly that is almost certainly a cache-size memory
anomaly associated with the JVM.

In the following sub-sections we discuss the applications that we have so far run
on Monte: Ising Model (section 5.1); Diffusion Limited Aggregation (section 5.2);
Artificial Life (section 5.3); Sensor Networks (section 5.4); and Cluster-Cluster Ag-
gregation (section 5.5).

5.1 Ising Model with Irregular Lattice

The Ising model is a simulation of a ferro-magnetic material and how it can exhibit
spontaneous magnetism when slowly quenched from a high temperature state (see
figure 5). Typical simulations of the Ising model feature lattices that are regular;
that is in which each lattice site, or atom, is directly connected to the nearest four
neighbours (in two dimensions) or six neighbours (in three dimensions).

We are studying the effects of the model when the lattice is perturbed through the
introduction of ’holes’ in the material or alternatively when Small-World [17] links

64-Bit Architectures and Compute Clusters 9

are added to the structure. Small-World links are akin to long distance short-cuts,
making neighbours out of potentially distant atoms.

Figure 5: Four configurations of the Ising model of a two dimensional ferromagnet
showing ordered and disordered magnetic domains (clusters) for various simulated
temperatures.

When the Ising code is run on a regular lattice there is no need to store the locations
of each of the neighbour bonds for each atom. As such most of the hardware’s
memory can be devoted to representing atoms’ spins, however when lattices are
perturbed it is necessary to have the neighbours explicitly stored in memory, thus
reducing the effective number of lattice points that are representable in the same
memory space. Monte’s 64-bit memory addressing allows us to simulate a much
larger system than would otherwise be accessible using 32-bit operating systems.

5.2 Diffusion Limited Aggregation

Diffusion Limited Aggregation (DLA) seeks to simulate the way in which particles,
such as crystals, agglomerate through the process of diffusion. In this simulation we
start with a central fixed particle, the seed, and release single particles from a large
radius. The mobile particle is allowed to diffuse randomly until it touches part of
the fixed structure, where it sticks.

Computationally, this simulation represents space as a large, albeit sparse, array of
discrete particle locations. Monte’s 64-bit memory addressing is vital for the ability

10 K.A. Hawick, H.A.James & C.J.Scogings

Figure 6: A two-dimensional diffusion limited aggregation cluster of approx 17,000
particles.

to simulate a large amount of space in order to grow particles with upwards of 1010

particles.

5.3 Artificial Life Models

We have developed a animat-based Artificial Life model for exploring the emergent
behaviour from large ensembles of interacting animats.

Our experimental animat model is a simple predator-prey model; the animats nom-
inally consist of prey (‘rabbits’) and predators (‘foxes’). Rabbits are considered to
have an unlimited amount of food ‘grass’. In contrast our foxes only predate rab-
bits; they do not eat grass in the model. A two-phase randomized update method
is used to update the system between discrete timesteps. This allows us to estab-
lish a well-defined movement phase where only spatial positions are changed and a
number-changing phase where animals are born or die. Our model is based on an
open system space. Animats occupy integer coordinates and in that sense the model
is an automata.

The evolutionary rules of our system are relatively simple. They are consulted in

64-Bit Architectures and Compute Clusters 11

the priority order that they appear in the list below. At every time step, each
animal executes one rule in order of priority. If rule 1 is executed, all other rules
for the animal are ignored. If rule 1 can not be executed, rule 2 is used, and
so forth. As previously mentioned, it is possible for animals to be located at the
same cellular coordinates as another animal; since our animals have no notion of a
third dimension, this just approximates use of a model with finer-grained cells and
with longer distances of animal perception. An alternative interpretation is that
our animats are Bosonic rather than Fermionic in that more than one animat can
simultaneously occupy the same discrete state.

The prey or ‘rabbit’ rules are:

• move away from a fox if the fox is adjacent;

• breed if a rabbit is adjacent and less than 5 rabbits are nearby;

• move towards a rabbit if the rabbit is nearer than 20 spatial units;

• move to a randomly selected adjacent position.

The predator or ‘fox’ rules are as follows:

• eat a rabbit if the rabbit is adjacent;

• move towards a rabbit if it is nearer than 80 spatial units and this fox is
hungry;

• breed if a fox is adjacent and less than 3 foxes are nearby;

• move towards a fox if it is nearer than 80 spatial and this fox is not hungry;

• move to a randomly selected adjacent position.

Animals live on an open coordinate system space. There is no ‘bounding box’ or
array of cells. Each animal stores its own coordinates. Although we do not enforce
conservation of energy in the sense that grass is always available to rabbits, we do
ensure transactional semantics to ensure no rabbit is eaten more than once.

The model is described in more detail in [13, 14, 10].

The main performance issues are associated with the O(N2) searching requirements
for animal-animal interactions. This gives rise to large memory requirements, par-
ticularly if we use memory-intensive Objects for each animat. Some performance
improvement can be obtained through the use of truncated interaction distances
and judicious use of look-up tableau. However, many of the obvious performance
improvement techniques do provide a positive trade-off against even higher memory
requirements.

12 K.A. Hawick, H.A.James & C.J.Scogings

Figure 7: Visualisation of the predator-prey model state. Dark pixels (blue) are the
prey (“rabbits”). Lighter pixels (red) represent predators (“foxes”). The rabbits
are relying on safety in numbers while fleeing from the attacking foxes. Very light
pixels (green) show the location of fox corpses when they died of starvation.

5.4 Sensor Net Coverage

The field of ad-hoc networks is an important and active one with many new appli-
cations arising from the viability of commodity priced deployable devices such as
personal digital assistants (PDAs) and other mobile agents or devices. There are
however some non-trivial problems in optimising ad-hoc networks in terms of compo-
nent cost and performance and reliability. The recent interest in small-world network
effects has highlighted the applicability of both graph theory and scaling theory to
the analysis of networked systems. We described some novel ad-hoc network sce-
narios involving small-world network effects and show the influence of ‘shortcuts’ on
the behaviour and properties of ad-hoc networks, comprising of wireless agents and
sensor networks in [7].

The performance limitations of graph-based simulations in this arena are due to the
fundamental high computational complexities of the requisite algorithms. Although
some memory-performance trade-off techniques and heuristics can be applied these
calculations are still heavily constrained by the hardware limitations of a system like
Monte.

64-Bit Architectures and Compute Clusters 13

Figure 8: 100 Nodes of a circular region of influence, each of radii 0.080, 0.099, 0.150
and 0.180, in a unit square.

5.5 Cluster-Cluster Aggregation

In a similar thread of research to that reported in section 5.2, we have also been
experimenting with a Diffusion Limited Cluster Aggregation (DLCA) [15, 11] code.
Whereas the DLA code features a single stationary particle and at each step a
single particle is released and allowed to diffuse until it aggregates with the existing
particle aggregate, the DLCA code maintains a ‘soup’ of particles which are allowed
to individually diffuse within the boundaries of our simulation. Akin to the DLA
model, when the particles collide they aggregate. Thus, the system may initially
contain many clusters of very small size. Over time the clusters aggregate to form
larger and larger clusters. Clusters diffuse in certain directions according to their
relative mass. A snapshot of our system is shown in figure 9.

The current state of the art in DLCA simulations has produced systems with hun-
dreds of clusters with many million particles in each. For this reason it is necessary
to be able to produce simulations of very large 2-, 3- and higher-dimensional sys-
tems. As can be gleaned from the discussion above, it is not merely sufficient that
we represent our very large lattice: there are quite a few subsidiary data structures
that can grow quite large, too. This requires the ability to access those regions of
memory higher than the 4GB limit imposed on current 32-bit operating systems,
or the 2GB addressable by signed 32-bit pointers. We have been successfully sim-
ulating very large systems using our Macintosh G5 processing nodes running the

14 K.A. Hawick, H.A.James & C.J.Scogings

Figure 9: Snapshot of our system at simulation time 508 when run with Peclet
number of 1.0. A right to left drift force is applied, which biases the random choice
of particle movement.

64-bit Tiger operating system that we were not able using previous versions. Also
required is the ability to instantiate a single variable with sufficient range to be able
to effectively use memory above the 2GB limit. In our 64-bit version of this code we
treat size t structures as if they are ints for the purposes of array indexing, etc.

6 Conclusions

We have discussed a wide range of simulation applications with different system
requirements. In general, the large-scale statistical simulation ensembles that we
require to investigate emergent and complex-systems behaviours mandate a compu-
tational platform with high amounts of memory and as fast a processor clock speed
that is economically available.

Generally, processor clock speed availabilities are a hostage to Moore’s Law, whereas
there is usually considerable discretion available to configure a platform with mem-
ory. We, like many other system procurers, are limited by the economic cost of
memory, rather than any particular fundamental limits set by the hardware. This
situation is likely to continue even with bus addressing effects associated with the
transition from 32- to 64-bit addressing. Languages like C/C++ typically have types
such as long long int and long double which support use of the new 64-bit word
lengths from the software and algorithms perspective. It then becomes a matter of
importance for programmers of applications such as the ones we describe in this pa-
per, to be aware of the issues involved in addressing data structures that transcend
the 2GB (signed) and 4GB (unsigned) memory barriers.

64-Bit Architectures and Compute Clusters 15

Acknowledgements

Thanks to IIMS for buying Monte.

References

[1] Apple Computer Ltd. G5 Processor Particulars available at
http://www.apple.com/powermac

[2] Barczak, A.L.C., Messom, C.H., Johnson, M.J., Performance Characteristics of
a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer, Research Let-
ters in the Information and Mathematical Sciences Volume 5, June 2003, ISSN
1175-2777

[3] Free Software Foundation. Gnu Compiler Collection available at
http://www.gnu.org

[4] Gan-El. M. and Hawick, K.A., Parallel containers - a tool for applying par-
allel computing applications on clusters. Research Letters in the Information
and Mathematical Sciences ISSN 1175-2777, Information and Mathematical
Sciences, Massey University, Albany, North Shore 102-904, Auckland, New
Zealand, May 2004. CSTN-005.

[5] Hawick, K.A. and James, H.A., Large Scale Spatial Simulation Optimisations,
Technical Report CSTN-032, February 2006.

[6] Hawick, K.A. and James, H.A., Performance, scalability and Object-Orientation
in Discrete Graph-based Simulation Models, and in: Proc. Int. Conf on Mod-
eling, Simulation and Visualization Methods (MSV’05), June 2005, Las Vegas,
USA.

[7] Hawick, K.A. and James, H.A., Small-World Effects in Wireless Sensor Net-
works, International Journal of Wireless and Mobile Computing. Special issue
on Mobile Systems, E-Commerce and Agent Technology. Vol 1, Issue 7, 2005.

[8] Hawick, K.A., James, H.A. and Scogings, C.J., Grid-Boxing for Spatial Simu-
lation Performance Optimisation, in Proc 39th Annual Simulation Symposium
- 2-6 April 2006, Huntsville Alabama, USA, Pub. IEEE Computer Society.

[9] Hawick, K.A., James, H.A. and Scogings, C.J., High-Performance Spatial Sim-
ulations and Optimisations on 64-Bit Architectures Technical Note CSTN-026,
October 2005.

[10] Hawick, K.A., Scogings, C.J. and James, H.A., Defensive Spiral Emergence in
a Predator-Prey Model, In Proceedings of Complexity 2004, Cairns, Australia,

16 K.A. Hawick, H.A.James & C.J.Scogings

December 2004, Edited by Russel Stonier, Quinglong Han and Wei Li, PP
662-674.

[11] Hellén, E.K.O., Salmi, P.E., and Alava, M.J., Cluster Persistence in One-
Dimensional Diffusion-Limited Cluster-Cluster Aggregation, Physical Review
E 66, 051108 (2002). http://de.arXiv.org/abs/cond-mat/0206139

[12] James, H.A. and Hawick, K.A., Trends in Cluster Computing Scheduling and
the Missing Cycles, in Proc. Int. Conf on Parallel and Distributed Processing
techniques and Applications (PDPTA’05), June 2005, Las Vegas, USA.

[13] James, H.A., Scogings, C. and Hawick, K.A., A Framework and Simulation
Engine for Studying Artificial Life. Research Letters in the Information and
Mathematical Sciences Volume 6, ISSN 1175-2777, May 2004.

[14] James, H.A., Scogings, C. and Hawick, K.A., Parallel Synchronisation issues
in Simulating Artificial Life, in Proc IASTED Int. Conf on Parallel and Dis-
tributed Computing and Systems (PDCS), MIT, Cambridge, November 2004.

[15] Peltomäki, M., Hellén, E.K.O., and Alava, M.J., No self-similar aggregates with
sedimentation, J. Stat Mech, JSTAT (2004) P09002.

[16] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical
Recipes in C++ Second edition, Cambridge University Press, 1988.

[17] Watts, D.J. and Strogatz, S.H., Collective dynamics of ’small-world’ networks,
Nature (393), 4 June 1998.

