
Res. Lett. Inf. Math. Sci.,  2005, Vol. 8,  pp 203-207           203 
Available online at http://iims.massey.ac.nz/research/letters/ 
 
 

Some properties of transition matrices  
for chain binomial models 

 
G. JONES1

 
1 Institute of Information Sciences & Technology 

Massey University, Palmerston North, New Zealand †
 

 
A chain binomial model is a Markov chain with a transition matrix whose rows are 
binomial probabilities. Two such chains are presented and illustrated with possible 
applications. The paper will focus in particular on some interesting properties of the 
transition matrices. 

 
 
 
 
1   Introduction 
 
A chain binomial model comprises a sequence of random variables {Xt} such that the 
conditional distribution Xt|Xt-1 is binomial distribution whose parameters are functions 
of Xt-1. It is clear from this definition that Xt has the Markov property, and that the 
sequence forms a Markov chain whose transition matrix P consists of rows of binomial 
probabilities. We consider here two examples where P has some interesting and unusual 
spectral properties, i.e. the eigenvalues and eigenvectors follow a simple pattern. These 
properties can be easily verified, but a constructive proof of the results awaits 
discovery. 
 
We first consider a finite chain based on a simple infection model. Our second example 
has an infinite state space and is based on the negative binomial distribution. 
 
 
2   An infection model 
 
Suppose a population of n individuals susceptible to a certain disease. Let Xt be the 
number still uninfected at time t, for t = 0, 1, 2, ...., and let pt be the probability that an 
individual is infected at time t. Such a model of infection was considered by Greenwood 
(1949) with pt proportional to the number of recently infected, and therefore infective, 
individuals. Their chain stopped when there were no new infectives. This model is 
suitable for certain diseases, like measles, which have a short fixed period of infectivity. 
Some results for this model using Markov chain theory were given by Gani and 
Jerwood (1971). 
 
Jones et al. (2000) considered a simpler situation in which disease is caused by a fixed 
source of infection, so that pt = p a constant. Here the chain stops only when all 
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individuals have become infected, i.e. when Xt = 0. Taking n = 8 for definiteness and 
writing 1 – p = q, the transition matrix P is 

q88pq728p2q656p3q570p4q456p5q328p6q28p7qp88

0q77pq621p3q435p3q435p4q321p5q27p6qp77

00q66pq515p2q420p3q315p4q26p5qp66

000q55pq410p2q310p3q25p4qp55

0000q44pq36p2q24p3qp44

00000q33pq23p2qp33

000000q22pqp22

0000000qp1

0000000010

876543210

q88pq728p2q656p3q570p4q456p5q328p6q28p7qp88

0q77pq621p3q435p3q435p4q321p5q27p6qp77

00q66pq515p2q420p3q315p4q26p5qp66

000q55pq410p2q310p3q25p4qp55

0000q44pq36p2q24p3qp44

00000q33pq23p2qp33

000000q22pqp22

0000000qp1

0000000010

876543210

 
The N-step ahead matrix PN, giving the transition probabilities for a period of N "days", 
is commonly derived from the canonical decomposition 

P = E Λ E-1

where E is the matrix of right-eigenvectors of P and Λ is the diagonal matrix of 
eigenvalues, giving 

PN = E ΛN E-1

For the above P we find that E is  
 

182856705628818

01721353521717

0016152015616

000151010515

0000146414

0000013313

0000001212

0000000111

0000000010

876543210

182856705628818

01721353521717

0016152015616

000151010515

0000146414

0000013313

0000001212

0000000111

0000000010
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i.e. E is a matrix of binomial coefficients. Moreover the inverse E-1 is simply 
 
 

1-828-5670-5628-818

01-721-3535-217-17

001-615-2015-616

0001-510-105-15

00001-46-414

000001-33-13

0000001-212

00000001-11

0000000010

876543210

1-828-5670-5628-818

01-721-3535-217-17

001-615-2015-616

0001-510-105-15

00001-46-414

000001-33-13

0000001-212

00000001-11

0000000010

876543210

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
because the minor of Eij is Eji. These results may be verified for any given n, but I have 
not been able to find a general proof. It is easily seen however that the eigenvalues of P 
are 1, q, q2, q3, ..., q8, because the eigenvalues of a triangular matrix are the diagonal 
elements. 
 
3   A chain negative binomial model 
 
Suppose that a gambler is able to play a game in which he wins $1 with probability p 
and loses $1 with probability 1 – p = q. He may play as many times as he wishes, and so 
resolves to keep playing each day until he as made a profit of $1, with any debts 
incurred to be paid off the following day. Let Xt-1 be the debt incurred on day t-1, to be 
paid off from his winnings on day t. Then on day t he must keep playing until he has 
won Xt-1 +1 games, so  

Xt | Xt-1 ~ Negative Binomial(Xt-1+1, p) 

This has been proposed by Jones and Lai (2002) as a possible model for the debt burden 
of a business. They show that if p < ½ then the unconditional mean and variance of Xt 
increase without limit, but if p > ½ then Xt converges to a geometric distribution with 
"probability of success" parameter 

12sp
p

= −  

If we regard the sequence {Xt} as a Markov chain, then the transition matrix P consists 
of rows of negative binomial probabilities as shown below. 
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…………………………

…pi+1qj………………pi+1i

…………………………

………252p6q5126p6q456p6q321p6q26p6qp65

………126p5q570p5q435p5q315p5q25p5qp54

………56p4q535p4q420p4q310p4q24p4qp43

………21p3q515p3q410p3q36p3q23p3qp32

………6p2q55p2q44p2q33p2q22p2qp21

…pqj…pq5pq4pq3pq2pqp0

…j…543210

…………………………

…pi+1qj………………pi+1i

…………………………

………252p6q5126p6q456p6q321p6q26p6qp65

………126p5q570p5q435p5q315p5q25p5qp54

………56p4q535p4q420p4q310p4q24p4qp43

………21p3q515p3q410p3q36p3q23p3qp32

………6p2q55p2q44p2q33p2q22p2qp21

…pqj…pq5pq4pq3pq2pqp0

…j…543210

i+j
j

i+j
j

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To examine the canonical decomposition of P we begin, following the example of the 
previous section, by defining the matrix of coefficients E as 
 
 

…………………………

…………………1i

…………………………

………2521265621615

………126703515514

………56352010413

………2115106312

………6543211

…1…1111110

…j…543210

…………………………

…………………1i

…………………………

………2521265621615

………126703515514

………56352010413

………2115106312

………6543211

…1…1111110

…j…543210

i+j
j

i+j
j

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we now denote the columns of E by e0, e1, e2, e3, ..., then we find that 

Pe0 = e0
Pe1 = e0 + qse1
Pe2 = e0 + 2qse1 + (qs)2e2
Pe3 = e0 + 3qse1 + 3(qs)2e2 + (qs)3e3        etc. 
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so the right-eigenvectors of P are given by 

v0 = e0
v1 = e0 – pse1
v2 = e0 – 2pse1 + (ps)2e2  
v3 = e0 – 3pse1 + 3(ps)2e2 – (ps)3e3        etc. 

and the eigenvalues of P are 1, qs, (qs)2, (qs)3, ... 
 
To derive the left-eigenvectors of P, we first define Ps to be the matrix P with p replaced 
by ps. Now denote the rows of Ps by r0, r1, r2, r3, ..., and we find that the right-
eigenvectors of P are given by 

u0 = r0
u1 = r0 –r1
u2 = r0 – 2r1 + r2
u3 = r0 – 3r1 + 3r2 – r3        etc. 

 
Again, these relationships may be easily verified. The author would be interested to see 
a general proof. 
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