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 In an attempt to examine the effect of dependencies in the arrival process on the steady state 
queue length process in single server queueing models with exponential service time distribution, 
four different models for the arrival process, each with marginally distributed exponential inter-
arrivals to the queueing system, are considered.  Two of these models are based upon the upper 
and lower bounding joint distribution functions given by the Fréchet bounds for bivariate 
distributions with specified marginals, the third is based on Downton’s bivariate exponential 
distribution and fourthly the usual M/M/1 model. The aim of the paper is to compare conditions 
for stability and explore the queueing behaviour of the different models. 

 
 
 
 
1 Introduction 
 
Consider a single-server queueing system.  Let the instants of arrivals be 0 = t0, t1, t2, 
..., and define the inter-arrival times Tn = tn - tn-1 for n ≥ 1. 
 
Assume that the service times are independent and identically distributed (i.i.d.) random 
variables (r.v.’s) with common distribution function (d.f.), 1 - e-µx, x ≥ 0, µ > 0. 
 
Various researchers have considered the effect of dependency in the arrival process by 
making various assumptions concerning the inter-arrival process {Tn, n ≥ 1}.   
 
The simplest model is the usual M/M/1 model whose properties are well known. 
 
Pyke Tin (1985) examined the transient and limiting behaviour of the queue size 
distribution and the limiting waiting time distribution in the case where {Tn} is a 
sequence of Markov dependent r.v.’s. A special case includes the joint distribution 
between consecutive interarrival-intervals given by Downton’s bivariate exponential 
distribution with joint probability density function (j.p.d.f.) 
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where I0(.) is a modified Bessel function of the first kind of zeroth order.  The 
correlation coefficient between Tn and Tn+1 is given by ρ (0 ≤ ρ < 1) with the ρ = 0 
case corresponding to independent and identically distributed {Tn}, the usual Poisson 
process input. 
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Patuwo, Disney and McNickle (1993) introduced dependency into the arrival process by 
means of auxiliary r.v.’s associated with arrival types to construct a Markov renewal 
input whose marginal inter-arrival distribution, in stationarity, is a mixture of Erlang 
distributions which, with judicious choice of parameters, can approximate the 
exponential distribution. 
 
In both these aforementioned papers it is shown that the introduction of dependency can 
have a major effect on queue lengths especially as the serial coefficient � and the traffic 
intensity increases.  The increase in mean queue length in the Patuwo, Disney and 
McNickle model can be quite marked for even moderate values of �. 
 
Earlier studies of correlated arrival queues can be found in Gopinath and Morrison 
(1977), Latouche (1981), (1985) and Runnenburg (1961), (1962).  For some simulation 
studies of the effects of autocorrelation in queues see Livny, Melamed and Tsiolis 
(1993).  See also the work of Sriram and Whitt (1986) for evidence of dependence 
among successive inter-arrival times in packet mutiplexers for voice and data. 
 
The approach taken in this paper is to generate the {Tn} inter-arrival process with each 
pair of r.v.’s (Tn, Tn+1), (n ≥ 1), being sampled from a specified joint d.f. F(x, y).  This 
mechanism will enable us to compare the effect of different first order dependent 
correlated inter-arrival times on the queueing behaviour of various models. 
 
 In effect, this means that once T1, T2, ..., Tn  have been generated, Tn+1 is generated by 
the conditional d.f. of Tn+1 given Tn.  In order to compare our results with those obtained 
from the usual Poisson input process we require that the marginal d.f. of each Tn  r.v. be 
exponential, with form 1 - e-λx, x ≥ 0, λ > 0. 
 
It can be shown (Hoeffding (1940); Fréchet (1951)), that every joint d.f. with fixed 
marginals can be bounded above and below by two j.d.f.’s determined solely by the 
marginals as given by the following Lemma. 
 

Lemma 1.1:   
Let (X, Y) be r.v.’s with joint d.f. F(x, y) and specified marginal d.f.’s F1(x) and F2(y) 
for X and Y respectively.  Then 
 A(x, y) ≤ F(x, y) ≤ B(x, y) for all x,                                       (1.2) 
where the j.d.f.’s A and B are given by 
  A(x, y) = max{F1(x) + F2(y) - 1, 0}, 
    B(x, y) = min{F1(x), F2(y)}.                        

 

We examine various models, each with marginal d.f.’s F1(x) = 1 - e-λx, x ≥ 0 and F2(y) = 

1 - e-λy, y ≥ 0. 
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Model 1:   F(x, y) taken as the j.d.f. corresponding to independent exponential 
distributions, i.e., 

 F(x, y) = {1 - e-λx}{ 1- e-λy},                                         x ≥ 0, y ≥ 0.    (1.3) 
 

Model 2:   F(x, y) taken as the upper Fréchet bound B(x, y), i.e. 
 B(x, y) = min{1 - e-λx, 1 - e-λy},                                   x ≥ 0, y ≥ 0. (1.4) 
 
Model 3: F(x, y) taken as the lower Fréchet bound A(x, y), i.e. 
 A(x, y) = max {1 - e-λx - e-λy, 0},                                  x ≥ 0, y ≥ 0. (1.5) 
 
Model 4: F(x, y) taken as the j.d.f. corresponding to Downton’s bivariate exponential 
distribution with p.d.f. given by (1.1). 
 
In this paper we investigate queueing models with arrival processes having successive 
inter-arrival times generated by the above bivariate processes and examine the effects 
that such arrival processes will have on the congestion in the resulting queueing system. 
As noted above, the bivariate distributions A(x,y) and B(x,y) are extreme cases, being 
lower and upper bounds for all joint distributions with specified marginals. Is this 
behaviour some how reflected in the queueing models constructed with such arrival 
processes?  
 
In order to explore these questions we first examine the properties of these bounding 
joint d.f.’s. We then follow this up with the implications of these results when the inter-
arrival time process {Tn} is constructed with each pair of r.v.’s (Tn, Tn+1), (n ≥ 1), 

being sampled from a specified joint d.f. F(x, y) whose marginal d.f’s are both 1 - e-λx, 
x ≥ 0,   λ > 0. 

 
2. Joint distributions with specified marginals 
 

The bounds on two-dimensional d.f.’s given by (1.2) have been used in the construction 
of bounds on two dimensional renewal functions in Hunter (1977).  In that paper 
various key properties of the upper and lower bounding d.f.’s were explored.  We 
summarise the relevant results in the situation when F1(x) = 1 - e-λx, x ≥ 0, and 
F2(y) = 1 - e-λy, y ≥ 0. 

 
Since both F1(x) and F2(y) are continuous non-decreasing d.f.’s, by considering the 
rectangles {(x, y): x1 < x ≤ x2,  y1 < y ≤ y2} it is easily seen that all the probability mass 
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for the j.d.f. A(x, y) lies on the curve F1(x) + F2(y) - 1 = 0, i.e. on the curve e-λx + e-λy 

= 1. 
  
Similarly, all the probability mass for the j.d.f. B(x, y) lies on the curve F1(x) = F2(y), 

i.e. on the line x = y. These results imply functional relationships between the r.v.’s X 
and Y: 

 
Lemma 2.1: 
(a)    If X has the d.f. F1(x) = 1 - e-λx, x ≥ 0 and Y ≡ X, then Y has d.f. F2(y) = 1 - e-λy,  

y ≥ 0, and (X, Y) has the j.d.f. B(x, y) given by (1.4). 
 
(b) If X has the d.f. F1(x) = 1 - e-λx, x ≥ 0 and Y ≡ - 

1

λ
ln (1 - e-λX), or e-λX - e-λY = 

1, then Y has the d.f. F2(y) = 1 - e-λy, y ≥ 0, and (X, Y) has the j.d.f. A(x, y) given by 

(1.5). 
 
Proof:  See Lemma 2.2, Hunter (1977).      
 
Thus A(x, y) and B(x, y) are both singular continuous distributions in two dimensions 
but with absolutely continuous marginals, in contrast to the absolutely continuous 
distribution corresponding to the special case with j.p.d.f. f(x, y) given by (1.1). 
 
By using the distribution functions F(x, y) with j.d.f. given by (1.3), A(x, y) given by 
(1.5), B(x, y) given by (1.4), and  F(x, y) with j.p.d.f. given by (1.1) we hope to obtain a 
variety of special cases that will give a coverage of possible bivariate exponential 
distributions.  In particular, concerning the correlations between the X and Y r.v.’s we 
have the following results. 
  
Lemma 2.2: 
Let ρ = corr (X, Y). 
(a) For (X, Y) with j.d.f. F(x, y) given by (1.3), ρ = 0. 
(b) For (X, Y) with j.d.f. B(x, y) given by (1.4), ρ = 1. 

(c) For (X, Y) with j.d.f. A(x, y) given by (1.5), ρ = 1 - 
π 2

6
≈ - 0.645. 

(d) For (X, Y) with j.p.d.f. f(x, y) given by (1.1), 0 ≤ ρ < 1. 
Proof:  Parts (a), (b) and (d) follow easily. 
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For (c) observe that    E[XY] = EX[X E[Y|X]] = E −X
1
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⎞ 

⎠ ⎟ , 

where we have used the transformation z = e-λx. The result now follows since E[X] = 
E[Y] = 1/λ; var(X) = var(Y) = 1/λ2.                                                           

 
The correlation coefficient for A(x, y) is the smallest possible for any pair of correlated 
exponential r.v.’s (see Moran (1967)).  For (a), when ρ = 0 the r.v.’s are independent. 
The maximum possible correlation occurs for B(x,y) , when ρ = 1. 

 
3. The queueing models 

 

When considering queueing models with exponential service times we typically explore 
the queue lengths embedded at arrival times.  
 
Let X(t) = Number of customers in the queueing system at time t, let Xn = X(tn-), the 

number of customers in the system immediately before the arrival of the nth customer. 
 

Let us digress to consider results for the GI/M/1 queueing system, where the inter-
arrival times are generated by a sequence of i.i.d. r.v.’s from a d.f. A(x), with mean 1/λ, 
(so that the arrival rate is λ customers per unit time). 

 
It is well known that {Xn, n ≥ 1} is homogenous first order Markov chain. The analysis 

of this Markov chain is effected by considering the relationship:  
  Xn+1 = Xn + 1 – Bn,    ( 0 ≤ Bn ≤ Xn + 1,  Xn ≥ 0 ),                     (3.1) 
where Bn = Number of customers served during the interarrival time Tn+1  = tn+1 – tn. 
 
Let  pij  = P{Xn+1 = j | Xn = i} be the one step transition probability of the M.C. 

Then pij   = 
P{Bn = i - j+ 1| Xn = i},   for  i ≥ 0 and 0 ≤ j ≤ i + 1
0,                                         otherwise.

⎧
⎨
⎪

⎩⎪
 

 
Note that for this model, Bn depends only on the length of the interval Tn+1 and not on 
the extent of the service the customer present in the system has received, because of the 
lack of memory of the exponential service times. 
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If j > 0, (i.e. Xn+1 > 0) there is still a customer in the system and the server must have 
been busy during the whole interval Un+1. Thus, for 0 < j ≤ i+1, i ≥ 0 we have 

pij = P{Bn = i – j + 1} = 
  0

∞

∫ P{Bn = i – j + 1 | Tn+1 = t} dA(t) 

 = 
  0

∞

∫
 

e−µ t(µt) i− j+1

(i − j +1)!
dA(t)   = ki-j+1,say,         (3.2) 

since if the server is fully occupied the service process is a Poisson process of rate µ. 

For i ≥ 0, (j = 0), since {kn} forms a probability distribution, pi0 = 1 - ∑
r=0

i
  kr  ≡  αi. 

Thus the transition matrix of the embedded M.C. is given by 

 

P =

α0 k0 0 0 0 . . .
α1 k1 k0 0 0 . . .
α2 k2 k1 k0 0
. . . . . .
. . . . . . .
. . . . . . . .

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. 

It is easily seen that {Xn, n ≥ 0} is irreducible ⇔ 0 < k0 ≤ k0 + k1 < 1.  
Further if {Xn, n ≥ 0} is irreducible it is aperiodic. 

���  ρ   ≡   
mean service time

mean inter arrival time   =  

 

1 / µ
1 / λ

=
λ
µ

=
1

jkjj=1
∞∑

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

 . 

The  MC is 

  

transient if ρ >1
persistent null if ρ =1
persistent non - null(ergodic) if ρ <1.

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

 
The stationary distribution of the irreducible Markov chain {Xn, n ≥ 0} is given by 

πj = (1 - r) rj, (j ≥ 0), where r is the unique root in (0, 1) of z = K(z) = ∑
j=0

   kj z j. 

Observe that K(z) = 
  j=0

∞

∑ kj z
j = 

  j=0

∞

∑   0
∞

∫
 

e-µt (µt)j z j

j!
 dA(t) =  0

∞

∫ e-µt(1-z)dA(t). 

i.e.             K(z) = A*(µ(1-z)),  where A*(s) is the LST of A(t). 
 

3.1 Model 1: The M/M/1 queue 
 
Using the results above it is easy to verify that, provided ρ < 1, {Xn, n ≥ 0} is an 

irreducible Markov chain with transition probabilities given by  
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P{Xn+1 = j | Xn = i } = P{Bn+1 = i + 1 - j } = 
 

e−µx (µx)i +1− j

( i +1 − j)!0

∞

∫ λe-λx dx  = ki + 1 – j.   (3.3) 

Note that  
  
kj =

λ
λ + µ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

µ
λ + µ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

j

,  j =  0, 1,  2, ... ; and K(z) 
 
=

λ
λ + µ(1 − z)

. 

Further, A*(s) =   0
∞

∫ e-st λe-λtdt = 
λ

λ+s
 , and solving K(z) = z yields r = ρ, and hence 

the queue length process embedded immediately before an arrival has a stationary 
distribution {πj} , with  

πj = (1 - ρ) ρj, (j ≥ 0),                                (3.4) 
and mean L = 1/ρ. 
 
For this model it is also well known that, provided ρ < 1, the queue length embedded 
immediately after a departure, and at an arbitrary time point, also has the above 
geometric distribution, under stationary conditions.  

 
3.2 Model 2: The upper Fréchet bound 
 
For this model the successive inter-arrival intervals (Tn, Tn+1) are sampled from the 
bivariate d.f. B(x, y) given by (1.4).  As a consequence of Lemma 2.1(a), given Tn = x, 
we have that Tn+1 = x. Thus once T1 has been obtained, as an exponential r.v. with 
mean 1/λ, all the subsequent inter-arrival intervals are determined identical to T1.   

 
Thus conditional upon T1 = x, the queueing model is in fact a D/M/1 queue. 

Given T1 = x,  b
  
≡

mean service time
mean inter - arrival time

=
1
µx

. 

The system will be stable ⇔ b < 1  ⇔ µ > 
1

x
 ⇔ x > 

1

µ
. 

The system will be unstable  ⇔ b ≥ 1 ⇔ µ ≤ 
1

x
 ⇔ x ≤ 

1

µ
,  with L = ∞. 

Lemma 3.1:  

For the queueing system with arrival process governed by the joint inter-arrival 

distribution B(x,y), 

P{System is stable} =exp − λ µ( ). 

Proof:  Since x is the observed value of X = T1 an exponential (λ) r.v.,  

P{System stable} = P{µX > 1} = P{X > 1/µ} = exp − λ µ( ).                                          
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Under the stable scenario, a limiting distribution will exist, with finite mean L. 

 

 The underlying bivariate process {Xn, Tn} is a Markov process since 
 P{Xn+1 = j,  Tn+1 ≤ t | X0, X1, ..., Xn = i;  T1, T2, ..., Tn = x} 

  = P{Xn+1 = j,  Tn+1 ≤ t | Xn = i,  Tn = x}, 
 with Xn+1 being determined through Xn and Tn+1, and Tn+1 being determined 

through Tn. 
Observe that for this model, since {T1 = x} ≡ {Tn+1 = x}, 

For 1 ≤ j ≤ i+1, using relationship (3.1), 

P{Xn+1 = j | Xn = i, Tn+1 = x}  = P{Bn = i + 1 - j | Tn+1 = x} = 
e−µx (µx)i+1− j

(i +1− j)!
, 

 so that, 

  P{Xn+1 = j | Xn = i} = 
e−µx (µx)i+1− j

(i + 1− j)!0

∞
∫ λe-λx dx  = k i + 1 - j, 

 as given for the M/M/1 model in expression (3.3). The result for j = 0 follows 
analogously. 
 
 Consequently, the one step transition probabilities of {Xn} process are identical to 

those obtained for the usual M/M/1 model.   
 
Note however that this does not necessarily imply that the {Xn} process is a Markov 
chain nor that the stationary distribution of the {Xn} process is the same as that given 

by (3.4). 
 
Using the results above for the GI/M/1 queue with GI = D, it is easy to verify, provided 
� < 1, i.e. µx >1, that conditional upon T1 = x, {Xn, n ≥ 0} is an irreducible Markov 
chain. 
 

Further, since A(t) = 
  

1, t ≥ x
0, t < x

⎧ 
⎨ 
⎩ 

,  A*(s) = 
 0

∞

∫ e-st dA(t) = e-sx, 

and solving, K(z) = A*(µ(1-z)) =  e-µ(1-z)x = z  when µx >1, yields a root z = r   ∈(0,1).  

  
= P{X n+1 =  j| X n =  i, Tn+1 = x }dF1(x)

0

∞

∫
  
P{X n+1 =  j |  Xn =  i} = P{X n+1 =  j, Tn+1 ∈ (x, x+dx) |  Xn =  i}

0

∞

∫
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Hence the queue length process embedded immediately before an arrival has a 
stationary distribution {πj} , with πj = (1 - r) �j, (j ≥ 0) and mean L = 1/r. 
 
3.3 Model 3: The lower Fréchet bound 
 
 For this model the successive inter-arrival intervals (Tn, Tn+1) are sampled from the 
bivariate d.f. A(x, y) given by (1.4).  As a consequence of Lemma 2.1(b), given Tn = x 

we have that Tn+1 = - 
1

λ
ln (1 - e-λx) ≡ y, say.  Thus once T1 = x has been obtained, as 

an exponential r.v. with mean 1/λ, T2 = y and T3 = - 
1

λ
ln (1 - e-λy) ≡ z. This implies 

that e-λz = 1 - e-λy, but e-λy = 1 - e-λx so that e-λz = e -λx or z = x, i.e. T3 ≡ T1.  The 
generation of the inter-arrival sequence is consequently an alternating sequence with T1 
= x, T2 = y, T3 = x, T4 = y etc where e-λx + e-λy = 1. 

 
As before, the underlying bivariate process {Xn, Tn} is a Markov process.  However for 

this model, we need to consider odd and even numbered transactions to determine the 
probability P{Xn+1 = j | Xn = i}. 

First observe that for 1 < j ≤ i + 1, 

  = 
e−µx (µx)i+1− j

(i + 1− j)!
0

∞

∫ λe-λx dx 

   = k i + 1 - j, as in (3.3) for n = 0. 

Secondly, for 1 ≤ j ≤ i + 1, 

But {T1 = x} ≡ {T2 = y} where e-λx + e-λy = 1, thus  

 

  
= P[X1 =  j |  X0 =  i, T1 =  x] dF1(x)

0

∞

∫
  
P[X1 =  j |X 0 =  i] =  P[X1 =  j, T1 ∈  (x, x+dx) |  X0 =  i]                

0

∞

∫

  
P[X2 =  j |X1 =  i] =  P[X2 =  j, T1 ∈  (x, x+dx) |  X1 =  i]           

0

∞

∫
= P[X2 = j | X1= i, T1= x] dF1(x)

0

∞

∫ .
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P[X2  =   j |  X1 =  i] = P[X2 =  j |  X1 =  i,  T2 =  y] dF1(x)

0

∞

∫  

  =
  

e− µy (µy)i +1− j

( i +1− j)!0

∞

∫  λe-λx dx. 

Substitute e-λx = 1 - e-λy, implying -λe-λx dx = λe-λy dy and thus 

 P[X2  =  j | X1 = i]  = 
0

∞

∫
(1 − e−λx )µ /λ −

µ
λ

ln(1− e−λx )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

i+1− j

(i +1 − j)!
λe-λx dx. 

   = 
e−µx (µx)i+1− j

(i + 1− j)!
0

∞

∫ λe-λy dy 

  = ki + 1 - j, as in (3.3) for n = 1. 

 This procedure can be generalised as follows: 

If n is even, {T1 = x} ≡ {Tn+1 = x}, while if n is odd, {T1 = x} ≡ {Tn+1 = y} where      

e-λx + e-λy = 1. 
  
In the n even case, for 1 ≤ j ≤ i + 1, 

 = 
e−µx (µx)i+1− j

(i + 1− j)!
0

∞

∫ λe-λx dx 

  = ki + 1 - j,  as in (3.3). 

While for n odd case, for 1 ≤ j ≤ i + 1, 

  = ki + 1 - j,  as in (3.3). 

 
Consequently, for all n, 1 ≤ j ≤ i + 1, P[Xn+1 = j | Xn = i] = ki + 1 – j,  as given for the 

M/M/1 model in expression (3.3).  The results for j = 0 follows analogously. 
 

  
P[Xn+1 =  j |X n =  i] = P[Xn+1 =  j |  X n =  i, T1 =  x ]λe-λxdx.

0

∞

∫

  
P[Xn+1 =  j |X n =  i] =  P[Xn+1 =  j |X n =  i,Tn+1 =  x ] λ e-λxdx

0

∞

∫

  
P[Xn+1 =  j |X n =  i] =  P[Xn+1 =  j |X n =  i,Tn+1 = - 1

λ
ln(1 -  e-λx) ] λe-λxdx

0

∞

∫
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Note however once again that the equality of the one-step transition probabilities of the 
{Xn} process to those obtained for the usual M/M/1 model does not necessarily imply 
that the {Xn} process is a Markov chain or that the stationary distribution of the {Xn} 

process is the same as that given by (3.4). 
 

The “average inter-arrival time”, given T1 = x, is 
 
a =

x + y
2

=
1
2

x −
ln(1 −e−λx )

λ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .  

Thus, conditional upon T1 = x, b =
mean service time

mean inter - arrival time
=

1

µa
. 

The system will be stable ⇔ b < 1 ⇔ 
 
µ >

1
a

=
2

x + y
⇔

λ
µ

<
λx − ln(1 −e−λx )

2
        (3.5) 

Lemma 3.2:  

For the queueing system with arrival process governed by the joint inter-arrival 

distribution A(x,y), 

P{System is stable} = 
1, if λ µ < ln2,

1− 1− 4e−2λ µ , if λ µ ≥ ln2.

⎧
⎨
⎪

⎩⎪
 

Proof: First observe that P{System is stable} = P λX − ln(1− e−λX ) > 2λ µ{ } where X 

is distributed as an exponential (λ) r.v. We can evaluate this probability by observing 

that an equivalent expression is P (e−λX )2 − e−λX + e−2λ µ > 0{ }= P Z2 − Z + e−2λ µ > 0{ } 

where   Z = e−λX . 

Let the roots of the quadratic in Z be z1 and z2, where  

 
z1 = 1− 1 − 4e−2λ µ⎛ 

⎝ 
⎞ 
⎠ 2  and z2 = 1+ 1 −4e−2λ µ⎛ 

⎝ 
⎞ 
⎠ 2 . 

Thus P{System is stable} = P{(Z < z1) ∪(Z > z2)} = P{ λX <- ln z2} + P{ λX >- ln z1}  

            = 1 - z2 + z1 =  1− 1 − 4e−2λ µ and the result follows. 

Condition for the roots of the quadratic to be real is that 
 

1− 4e−2λ µ ≥ 0 ⇔
λ
µ

≥ ln 2.  

Otherwise the roots are imaginary and  Z2 − Z + e−2λ µ > 0for all Z. 
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Observe that if 
λ
µ

≥ ln 2 , for a particular realisation T1 = x, the system will be stable 

⇔ ������ 
  
x < x2 =

− ln(z2 )
λ

 or  x > x1 =
− ln( z1)

λ
.  

This is as a result of the fact that if a small value of T1 = x is obtained then a large value 

for T2 = y = - 
1

λ
ln (1 - e-λx) is obtained. Thus if x < x2 then automatically y > x1 and 

vice-versa, if x > x1 then automatically y < x2 . The system is however stable for all 

values of x (and y) if λ µ < ln 2 .    

 

Consider a graphical approach. Observe that from the graph of “a” versus “x” , with λ = 

1, a is always greater than 0.693... = log2.  Equivalently from the graph of “1/a” versus 

“x”,  1/a is always less than 1/ln2 = 1.442... 

 

 
a versus x 

 

       
1/a  versus x 
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The system will be stable, with probability one, if µ > 
1

a
 = 

2

x − ln(1− e− x )
  for all x. 

i.e. if µ >
x>0

max{
2

x − ln(1− e− x )
}=

1

ln 2
= 1.442... 

 
Observe that conditional upon T1 = x, (and hence T2 = y) the queueing model is in fact 

a special semi-Markovian SM/M/1 queue with the arrivals consisting of two types, 1 
and 2, alternating with constant inter-arrival times of length x and y, respectively.  Let 
Zn be the type of the arrival (either 1 or 2) at tn, the n-th arrival time point, with inter-
arrival times Tn = tn - tn-1 (with T0 = 0.)  
The Markov renewal kernel for the arrival process {Zn, Tn} is given by the 2 × 2 matrix 

A(t) = [Aij(t)] where Aij(t) = P{Zn+1 = j, Tn+1 ≤ t | Zn = i}. 

Thus conditional upon T1 = x, 
  
A(t ) =

0 Ux (t)
Uy (t) 0

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

, where 
 
Ux(t) =

0, t < x,
1, x ≤ t.

⎧ 
⎨ 
⎩ 

 

Using the formulation for the SM/M/1 queueing model of Cinlar (1967) and Neuts 
(1978), (see also Neuts (p162-3, 1981)), the queueing model {Xn, Zn, tn} can be 
examined using Markov renewal theory. In particular {Xn, Zn, tn} is a Markov process 
and {Xn, Zn}  (n = 0, 1, 2  ..) is a Markov chain. The state space of this chain can be 
represented as {(i, j), i = 0, 1, 2, …, j = 1, 2 }. The one-step transition matrix for this  

Markov chain has the form 

 

P =

B0 A0 0 0 ...
B1 A1 A 0 0 ...
B2 A2 A1 A0 ...
. . . . ...
. . . . ...

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

, where the elements are all     

2 × 2 matrices given by  Bn = A k = A −k=n+1
∞∑ Akk =0

n∑ , 
 
A = Ak =

0 1
1 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ k=0

∞∑ ,  

where 
    
Ak =

(µt)k e−µt

k!0

∞
∫  dA(t) =

0 pk (x)
pk (y) 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  with pk (x) =

(µx)k e−µx

k!
. 

Note that 
  
Bn =

0 t n (x)
t n (y) 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  with t n (x) = pk (x).

k =n+1

∞

∑  

The necessary and sufficient conditions for stability are (Neuts (p202, 1978)) 
  

′ π γ >
1
µ

, 

where 
  

′ π =
1
2

,
1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  is the invariant distribution of A and γ  �s the vector of row sum 



14  J.J. Hunter  

 

means of the semi-Markov kernel A(t) with  ′ γ = (x,y) , i.e. 
 

1
2

x + y( )>
1
µ

 (as explored 

in (3.6)). 
 
Note that the order of the states for the transition matrix P of {Xn, Zn} is {(0,1), (0,2); 
(1,1), (1,2); (2,1), (2,2); (3,1), (3,2);  …}. If we now re-order that states as {(0,1), (1,1),  
(2,1), (3,1), (3,2), …; (0,2), (1,2), (2,2), (3,2), …} the transition matrix can be re-

expressed as 
    

 
P =

0 P(x)
P(y) 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  where P(x)

 

=

t 0(x) p0 (x) 0 0 ...
t1(x) p1(x) p0 (x) 0 ...
t 2(x) p2 (x) p1(x) p0(x) ...
. . . . ...
. . . . ...

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. 

Under the irreducibility conditions the stationary distribution {xij}, (i = 0, 1, 2, … ; j = 
1, 2) of the Markov chain {Xn, Zn} exists. Let   ′ x 1=  (x01, x11,x21,x31,...) and 

    ′ x 2 = (x02,x12,x22, x32,...) then       ′ x P = ′ x  implies   ′ x 1 =  ′ x 2P(y)  and ′x2 =  ′x1P(x).   

Hence     ′ x 1 =  ′ x 1P(x)P(y) and     ′ x 2 =  ′ x 2P(y)P(x).  i.e.    ′ x 1 and    ′ x 2   are scaled stationary 
probability vectors for Markov chains with transition matrices P(x)P(y) and P(y)P(x),  
respectively. Since     P  is the transition matrix of a periodic Markov chain, a limiting 
distribution may not necessarily exist for the Markov chain {Xn, Zn}. The results given 
by Neuts and Cinlar typically require the Markov chain {Xn} to be ergodic and 
consequently they cannot necessarily be applied to this model. 
 
Szekli, Disney and Hur (1994) also examine a two-state SM/M/1 queue (that they call a 
MR/M/1 queue). They introduce generating functions to find expressions for the E[Xn]. 
We intend to explore this approach further in a follow-up study. 
 
3.4 Model 4: Downton’s bivariate exponential distribution 

 
For this model we consider the queue through the process {Xn} with the inter-arrival 
pairs (Tn, Tn+1) having j.p.d.f given by (1.1). 

 
 First note that the marginal p.d.f. of X = Tn is given by f1(x) = λe-λx. The conditional 
p.d.f. of Y = Tn+1 given X = Tn = x is given by 

  f2(y|x) = 
  

λ
1− ρ

1
i!i!

ρλx
1− ρ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

i
λy

1− ρ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

i

exp −
ρλx + λy

1 − ρ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=0

∞

∑ ,                (3.6) 

 where we have used the series expansion for I0(.). 
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For 1 ≤ j ≤ i + 1, 

 = P[X1= j |X0 = i, T1 = x] λ e-λx  dx
0

∞

∫ = ki+1− j.  

This integral is the expectation of 
e−µY (µY )i+1− j

(i +1 − j)!
and thence, since f2(y) = λe-λy, 

P{X2 = j | X1 = i} = 
  

e−µy (µy)i+1− j

( i +1− j)!
 

0

∞
∫ λe−λydy = ki+1− j , as derived for the M/M/1 

model, equation (3.3). Similarly we can derive analogous results when j = 0. 
 
With a similar derivation, we can derive identical expressions for P[Xn+1 = j | Xn = i], 

(n ≥ 0) to those obtained for the M/M/1 model. 
 
Pyke Tin (1985) in examining the transient behaviour of the queue size distribution via 
the joint distribution P{Xn = j, Tn ≤ t | X0 = i}, for this model, showed that for 0 < ρ < 1 

and λ < µ,  

 
 
π k =  

n→∞
lim P{Xn  =  k} =

1− βT, k = 0,
β(1− T)Tk , k ≥1,

⎧ 
⎨ 
⎩ 

  

where 

(i) T  = 
  
ρ +

µ(1 − ρ)
λ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

 

(ii) β = 
µ1 − ρ + a(1 − ρ) / λ
(µ1 − ρ )(1+ a / λ)

. 

(iii) a = 
−(1 − ρ )(1+ µ / λ ) +{[1 + ρ + µ(1 − ρ) / λ ]2 − 4ρ}1/ 2

2(1 − ρ) / λ
 

�� µ1, µ2 = 
1
2  [1 + ρ + µ(1-T)/λ] ± {[1 + ρ + µ(1 - ρ)/λ [1-T]]2 - 4ρ}1/2. 

 
4 Discussion 
 

The results obtained for all the four models show that the transition probabilities of the 
form P[Xn+1 = j | Xn = i], where Xn is the queue length embedded immediately prior to 

an arrival, show no dependence upon the correlation coefficient ρ  of the joint 
distribution between successive arrivals. The form of the particular bivariate distribution 
used to generate the correlated arrival process is not evident in the expressions for the 

P[X1= j |X0  = i] = P[X1= j,  T1 ∈  (x, x+dx) |X0 = i]
0

∞

∫
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one-step transitions of the {Xn} process. In reflection, this is to be expected since the 

transition probabilities depend in effect only on the marginal distribution of the inter-
arrival times between successive arrivals.   However, the conditions for stability of the 
queue length processes vary markedly with λ  < µ for Model 1 when ρ = 0; with T1 > 

1/µ with probability 
 
exp − λ µ( ) for Model 2 when ρ = 1; with 

 
λT1 − ln(1 − e−λT1 ) >

2λ
µ

 

with probability  1− 1− 4e−2λ µ  if  λ µ ≥ ln2 and probability 1 otherwise for Model 3 

when ρ = - 0.645; and λ < µ for Model 4 with  0 < ρ < 1. 
 
References  
 
Cinlar E. (1967). Queues with semi-Markovian arrivals. J. Appl. Prob., 4: 365-379 
 
Fréchet M. (1951).  Sur les tableaux de correlation dont les marges sont donnees. Ann. 

Univ. Lyon, A(3), 14: 53-77  
 
Gopinath B., and Morrison J. A. (1977). Single Server Queues with Correlated Inputs. 

Computer Performance, K. M. Chandy and M. Reiser, eds., North-Holland Publ. 
Co., 264-277  

 
Hoeffding W. (1940).  Masstabinvariante Korrelationstheorie. Schriften Math. Inst. 

Univ. Berlin, 5: 181-233  
 
Hunter J. J. (1977). Renewal Theory in Two Dimensions: Bounds on the Renewal 

Function. Adv. Appl. Prob., 9: 527-541 
 
Latouche G. (1985).  An Exponential Semi-Markov Process with applications to 

Queueing Theory. Stochastic Models, 1: 137-170  
 
Latouche G. (1981).  On a Markovian Queue with Weakly Correlated Inter-arrival 

Times. J. Appl, Probab., 18: 190-223 
 
Livny M. Melamed B. and Tsiolis A. K. (1993). The Impact of Autocorrelation on 

Queueing Systems. Management Science, 39: 322-339  
 
Moran P. A. P. (1967). Testing for Correlation Between Non-Negative Variates. 

Biometrika, 54, 3 and 4: 385-394 
 
Neuts M.F. (1978). Markov chains with applications in queueing theory, which have a 

matrix-geometric invariant probability vector. Adv.  Appl. Prob., 10: 185-212 
 
Neuts M.F. (1981). Matrix-Geometric Solutions in Stochastic Models, An Algorithmic 

Approach. The Johns Hopkins University Press, Baltimore 



Markovian queues with correlated arrival processes  17 
 

 

 
Patuwo B. E., Disney R. L. and McNickle D. C. (1993). The Effect of Correlated 

Arrivals on Queues. IIE Transactions, 25, (3): 105-110  
 
Runnenburg J. Th. (1961). An Example Illustrating the Possibilities of Renewal Theory 

and Waiting Line Theory for Markov Dependent Arrival Intervals. Nederl. Akad. 
Wetensch. Pro. Ser., A, 64: 560-576  

 
Runnenburg J. Th. (1962).  Some Numerical Results on Waiting Time Distributions for 

Dependent Arrival-Intervals. Statist. Nederlandica, 12: 19-29  
 
Szekli S. Disney R.L. and Hur S. (1994). MR/G/1 queues with positively correlated 

arrival stream. J. Appl. Prob., 31: 497-514 
 
Sriram K. and Whitt W. (1986). Characterizing Superposition Arrival Processes in 

Packet Multiplexers for Voice and Data, IEEE J. on Selected Areas in Comm., SAC-
4: 833-846 

 
Tin Pyke (1985). A Queueing System with Markov Dependent Arrivals, J. Appl. Prob., 

22: 668-677



18 
 
 

 

 


