
Res. Lett. Inf. Math. Sci., 2005, Vol.7, pp101-115
Available online at http://iims.massey.ac.nz/research/letters/

101

Managing Community Membership
Information in a Small-World Grid

K.A. Hawick and H.A. James
Computer Science

Institute of Information and Mathematical Sciences
Massey University, Albany

North Shore 102-904, Auckland, New Zealand
Email:

{k.a.hawick,h.a.james}@massey.ac.nz

As the Grid matures the problem of resource discovery across communi-
ties, where resources now include computational services, is becoming more
critical. The number of resources available on a world-wide grid is set to grow
exponentially in much the same way as the number of static web pages on
the WWW. We observe that the world-wide resource discovery problem can
be modelled as a slowly evolving very-large sparse-matrix where individual
matrix elements represent nodes’ knowledge of one another. Blocks in the
matrix arise where nodes offer more than one service. Blocking effects also
arise in the identification of sub-communities in the Grid. The linear algebra
community has long been aware of suitable representations of large, sparse
matrices. However, matrices the size of the world-wide grid potentially num-
ber in the billions, making dense solutions completely intractable. Distributed
nodes will not necessarily have the storage capacity to store the addresses of
any significant percentage of the available resources. We discuss ways of mod-
elling this problem in the regime of a slowly changing service base including
phenomena such as percolating networks and small-world network effects.

Keywords: small-worlds; computational Grid services; online communi-
ties; sparse matrices.

1 Introduction

A computational grid [2] is a collection of computational resources connected via
a high-speed computer network that are able to share in the solution of complex
scientific problems. There have been a number of popular grid projects across the
US (e.g. [6]), Europe (e.g. [5, 14, 15]) and Australasia (e.g. [8, 7]).

Grid initiatives seek to make the inter-operation of distributed computational
resources more efficient. This can take the form of hiding the location of servers from
users, or providing efficient abstractions to scientific instruments available through
the Internet. In addition grid projects make the transportation of data between
the distributed computing sites very much easier. Some grid projects such as [6]
have defined a large number of standard instrument and data interfaces that are
able to be applied to resources on the Internet. While the approaches taken by
different grid projects differ, most have at least some kind of service. Discussed at
length in section 2, services are typically the fundamental units of execution in grid
environments. We make a distinction between The Grid as a global entity and a
general computational grid infrastructure. Whereas the Grid is a long-term specific
project, the grid refers in general to any software that aids the use of computa-
tional resources in a wide-area environment. Different projects have attempted to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

https://core.ac.uk/display/148639167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Managing Community Membership Information in a Small-World Grid 102

solve varying aspects of the wide-area distributed computing problem, such as fault
tolerance and parameterised simulations environments.

Based on the ubiquity of the Internet, grid computing environments promise to
permanently change the way in which large-scale computing will be conducted in
the near future. Scientific and commercial users are becoming excited about the
facilities that the global grid offers. Our vision is for a Global Grid infrastructure
in which user communities are able to define and use their own representations of
data and services as if they are the only users of the grid. Communities could
either have the same or different themes, as discussed in section 2. Communities
may overlap in the services they utilise. However they should be able to use those
services as advertised by any other community, whether the theme is the same or
not, providing they either know its name or its functionality.

In our prototype grid infrastructure, named DISCWorld [8], data and services
have associated metadata and a concise representation format [9] which can be used
reason about services. Tasks are comprised of a graph of services; the graph can
contain a limited number of cycles and can also contain nested sub-graphs. Services
reside on hosts; while some services may retain a small amount of location-awareness
information the majority of such information is held at a host level. In order to
schedule graphs of DISCWorld services [10] the relevant services must be located on
hosts potentially across the Internet; the problem of resource discovery is the main
topic of this paper.

In section 2 we describe the concept of a service and the problem of resource
discovery more fully. We discuss issues surrounding the representation of services
and introduce the particulars of our model in section 3; a reference representation
of our system is described in section 4. Some of the issues involved in representing
a grid the scale of the Internet are described in section 5. To make the problem
more tractable we introduce the concept of a small-world network in section 6.

2 Services & Communities

In this section we elaborate upon what grid services are or could become on a
global Grid system and outline a notation for describing how they can be uniquely
identified and grouped. A service on the global grid can be considered in many ways.
In general a service is best thought of as some action a server performs on behalf
of a user request or query. The request could in fact come from another server
if servers act as peers on the grid. Some typical services might involve running
a parameterised program to generate some data or storing a data item or indeed
just retrieving a pre-existing data item. With such a definition web servers are
essentially supplying a grid service, and indeed the web provides the all important
infrastructure for any more sophisticated grid services to function in.

A number of grid projects are exploring the sorts of prototype services that
are of use to distributed users. Generally it is easier to discuss the properties of
these in an applications-specific context. For the purposes of this paper and the
model we describe, we assume that services have a distinct name, some well-defined
parameters, and at least one server that offers the service to clients. Services do not
exist in isolation - they can be typically chained together according to the data types
of their respective outputs and inputs. They can also be typically grouped together
according to the communities that develop and use them. For example, there is an
established community of image processing users or geographic information systems
users and developers already on the WWW. These communities share some common
background, interests and most importantly jargon and naming conventions.

Figure 1 shows the conceptual notion of a global grid of many services, grouped
together in various ways. One of the key ideas of this paper is that the “clumping”

Managing Community Membership Information in a Small-World Grid 103

or grouping together of services within sub-communities drastically affects the re-
lationships and hence connectivity properties of a graph of all services. Using this
observation we discuss various data structures with which to model service relation-
ships and indeed to compute clustering and graph-distance properties. The various
quantitative regimes that arise allows us to propose various ways for grid servers to
self-model their behaviour in dealing with service management.

Tools

Linear Algebra
Sparse Dense

Iterative Direct

Simulations

Discrete Event

Small World Graphs
and networks

GIS

Precision
Formats

lattice models

Computational Physics

Growth ModelsMonte Carlo methods

Java Users

Tools

Standards

Image Analysis

Packages

Formats
algorithms

Figure 1: Global space of interacting and overlapping communities - each will have
its own set of known, preferred services. They may overlap with those of other
communities - and may have different naming conventions.

In this paper we consider the problem of representing the Grid as a system
comprising of a number of discrete services NS , a number of servers NH each of
which can host one or more services, and a group of user communities NC . Generally
NS >> NH > NC . At any given time there will be some number of user processes
or requests (NU) outstanding for services to be run. There is no strong relationship
between NU and the other numbers, although we might assume that NU ∼ NH at
any particular time and that NU >> NC

The problem is essentially the maintaining of information on which servers host
the relevant services that are required by different communities. This is analogous to
the problem of finding hosts that has been solved through the use of Domain Naming
System (DNS) in the Internet. However, unlike the DNS solution, where hosts may
have different names through the use of aliases, we are not able to mandate a single
naming authority for the different user communities on the Internet. We must be
satisfied with the restriction that each application community may have their own
name for a given service, and perhaps even different names for the same service may
be used within the same community.

One of the solutions proposed to this problem is allowing each user community
or the groups within the community to make and use their own naming conven-
tions, and have those service names ratified by some sort of annual general meeting
through the use of arbitration. This model has been successfully used in the botany
field in, for example, the naming of a new insect. Clashes however, occur especially
since insects like other impure names are laden with conventions and sometimes
political connotations. It it entirely possible for it to emerge that two sub commu-
nities have been using two different names for the same service for a long time. This
must later be resolved. Services on the grid will have the same naming problems
as humans do but the clashes must be resolved at a timescale that may be dictated
by the Grid and the computers involved (eg milliseconds for the global Grid) rather

Managing Community Membership Information in a Small-World Grid 104

that at human timescales (eg months or even years).
Resources on the global Grid include services and data items. We assume each

resource can be identified by a specific name - pure or otherwise. Users are assumed
to have unique names. Services instances must have a unique name although it
may later turn out that two services are in fact the same. Servers or hosts must
have unique names and in general these hostnames are superposed on the Internet
number/location information of a device.

Clumps of services can be (loosely) named as communities which need not have
definite unique name although this may help if it is part of the metadata accom-
panying each service. In this paper we assume that we can and do assign unique
names to communities, although two communities of initially different names may
merge.

Instructions

Retrieve Image 1 Retrieve Image 2

Apply Filter Apply Filter

Difference

Mean Value

Figure 2: A simple image processing task DAG.

We consider tasks to consist of a finite chain of services linked together with
some data being passed between the services [10, 11, 9]. Figure 2 shows a simplified
example of service dependencies. The task graph is for an image processing example.
Each box represents a service in a grid environment, and the arrows indicate task
dependencies or dataflow. We would expect to find a typical task consisting of
services from one user community clump, however it is not impossible that a task
could span communities. Consider, for example, a user in the GIS community who
most often relies on services found within that community. Occasionally the user
might wish to use services from the Simulations or Linear Algebra communities. On
these occasions the services used by the task will span clumps. Our system is able
to organise the efficient partitioning and scheduling of complex task graphs across
distributed computing nodes [10].

A key idea is that services are interdependent upon one another. Processing
services may need to chain together to satisfy a compound processing request and
they may need short or long term storage services to retrieve or deposit inputs to
and outputs from calculations. A global Grid needs efficient and practical means
for services or resources to discover one another either by explicit name or by
matching metadata, including data types and processing command arguments.

We might suppose that a metadata matching service of low or high simplicity is
some capability of all services on our Grid and forms their means of interacting or
“knowing about” one another.

Managing Community Membership Information in a Small-World Grid 105

3 Services Cross-Awareness

In this section we discuss how the graph of cross-awareness or service discovery
knowledge can be represented as an adjacency matrix.

Example Linear Algebra Services Data Types Resource Requirement
Store a Matrix as part of a calculation M Temp storage
Store a Vector as part of a calculation V Temp storage
Store or retrieve a particular matrix M Long term storage
Extract particular value from a matrix M : Compute
Dense Matrix-Vector Multiply M, V: V Compute + Temp Storage
Dense Matrix-Matrix Multiply M, M: M Compute + Temp Storage
Dense Matrix Invert M : M Compute + Temp Storage
Dense Matrix Solve M, V: V Compute + Temp Storage
Sparse Matrix to Dense Matrix Expand S: M Compute + Temp Storage
Sparse Matrix Conjugate Gradient Solve S, V: V Compute + Temp Storage

Table 1: Linear Algebra Grid Services

Example Imaging Services Data Types Resource Requirement
Store an Image as part of a calculation I Temp storage
Store or retrieve a particular Image I Long term storage
Store or retrieve a particular Kernel K Long term storage
Extract particular pixel from an image I : Compute
Apply a kernel to an Image I, K : K Compute + Temp Storage
Apply well-known operation (eg FFT) to image I : I Compute + Temp Storage

Table 2: Image Processing Grid Services

Tables 1 and 2 shows some example services for user communities of linear al-
gebra and image processing. Just creating these fictitious simple services highlights
many of the important issues and obstacles to a grid service oriented world. We
suppose there is some metadata associated with each item of data. Data type is
either assumed to be a bulk item worthy of special consideration such as a Matrix,
a Vector, an Image, an image-transform specification Kernel, or a scalar which can
be packaged up in the metadata. Some operations require temporary or essentially
anonymous temporary storage that is only needed for the duration of a processing
request, whereas other operations require some storage service that itself requires
negotiation to ensure transmission of retrieval metadata as part of the service. In
these examples we have glossed over details connected with the size of the particular
data items or the scope of the tasks. For small images or matrices perhaps many
computer hosts can offer the requisite services. For very large matrices only super-
computers can offer a matrix solver service. There will of course be many specialist
variations of a generic service with different algorithms or options available. It is
no trivial matter to set up a schema for all the metadata and indeed the type space
problem[3] itself is a difficult one to approach. We do not address these issues in
this paper but continue with discussions of the more general naming and discovery
issues.

For simplicity we imagine services like those in tables 1 and 2 as having some
pure name (that is unique to our whole system). Each service is labelled by a unique
integer k. We further suppose that we can uniquely label our servers or hosts by a

Managing Community Membership Information in a Small-World Grid 106

i

2

3

4

5

6

2 3 4 5 6i1

1
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

	 	
	 	
	 	

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

k−column

k
−

ro
w

a) b)
j

5

6

7

8

9

10

11

12

5 6 7 8 9 10 11 12

i

j

i

2

3

4

2 3 41

1

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

	 	
	 	
	 	

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

k−column

k
−

ro
w

� �
� �
� �

� �
� �
� �

c) d)

Figure 3: a) Insertion of a row i into a 6 × 6 adjacency matrix, requires insertion
of both a new row and a new column. b) 10 Linear algebra services running on one
host for community One and 6 Image processing services running on a second host
for community Two. Each service knows about itself (the diagonal elements) and
the lighter shaded blocking shows that each community is fully and densely con-
nected. Every service element in each community knows about every other service
in that community. the two communities are disparate however. c) Permutation
(swap) of two rows i and j requires swap of their corresponding columns and also
the individual swap of their cross over elements. i, j 7→ j, i and i, i 7→ j, j. d)
Service 1 is designated as a gateway node in community One and node 13 has been
designated gateway node for community two. Dark gray shading indicates gateway
node knowledge of other services (rows) and services knowledge of the well known
gateway (columns). In addition services 1 and 13 know about one another.

unique integer j and that each jth host can refer to the particular services it offers
by a unique integer i.

We have: k = 1, 2, ..., NS ; j = 1, 2, ..., NH ; and i = 1, 2, ..., NHj . This then allows
us to generate a unique integer k′ for each service instance. We can construct various
number to metadata or name mapping functions or operators providing we have no
ambiguities.

Figure 3a) emphasises the fact that the adjacency or “knows-about” matrix is
square and any particular service element has a corresponding row and column.
The diagonals can be treated either as always empty or always as a self-knowledge
element. In using the adjacency matrices in calculations it is often easier to fill
the diagonals, but self knowledge of a service is somewhat obvious as shown in
figure 4 and obscures the in- and out- degrees of the nodes which correspond to
the “knowledge of” elements in our matrix. We adopt the convention that matrix
element i, j corresponds to knowledge of service j by service i.

Managing Community Membership Information in a Small-World Grid 107

Row

2

0

2

1

0

0 1 1 1 2

Out Degree

In Degree

Column

Node = 1,2,...,5

5321

1

2

3

4

5

1

2

3

4

5

4

Figure 4: Adjacency matrix for a simple task graph of five nodes. The row sums
(excluding diagonals) give the out degree and the column sums (excluding diagonals)
give the in-degree of the nodes. Degree corresponds to knowledge in our service
matrix.

Consider an example grid of two communities each with one host. Host 1 offers
Linear algebra services (numbered for the example as 1, 2, ..., 10); Host 2 offers the 6
Image Processing Services. We can describe this information in a matrix represen-
tation as shown in figure 3b). The adjacency matrix shows the graph relationship
“knows about”, where service in row kr “knows about” the service in column kc.
For simplicity in this example make each service have only one instance, but we can
construct the matrix for instance-indices (k′) rather than service-indices (k).

The sparse blocked matrix representation that arises is shown in figure 3b)
and can be analysed for various properties including scaling and connectivity. It
is sometimes useful to consider the decomposition of the adjacency matrix A =
L + D + U into diagonal and upper and lower triangular components. In our
notation the upper triangular part denotes knowledge of node j by i. The diagonal
can be factored out as it only denotes self knowledge.

It is likely that a particular host-server will not just offer unrelated services but
will offer services associated with a particular community. In many cases hosts will
serve one community, but this is not necessarily so and so it may be more useful to
group service instances by community rather than by host. We might optimistically
assume that communities are sufficient for our analysis as a particular service will
have a single well known name within a particular community. This is not always
the case however and we have sometimes to drop back to the case of unique service
names within a particular host - which generally will be the case for operational
reasons.

We can transform our matrix representation by permuting rows to group like-
services together by community or host. Providing our number/naming identifica-
tion system, is pure this does not affect the “who knows about who” relationships,
but it can make the matrix easier to interpret visually. Figure 3c) shows how two
services can be swapped or permuted. Both individual rows and columns must
be swapped and the individual cross elements must be individually swapped also.
Repeated use of this permutation operation allows us to group services any way we
wish - by community or by host. Both groupings may be useful for calculation of
properties of our service grid.

Managing Community Membership Information in a Small-World Grid 108

4 Adjacency Matrix Structure

The awareness or resource discovery matrix representation illustrates a number of
ways for services to be aware of one another. A fully dense structure would indicate
that every service knew about every other service. This is the way the Internet
started. One of us remembers working on a mainframe in Edinburgh during the
early days of the global Internet, and having to receive a “hosts file” periodically
from the USA giving the names and addresses of every other host that was registered
on the Internet. Obviously this was untenable for the Internet hosts’ cross-awareness
knowledge as the number of hosts grew. The Domain Name Service based on a tree
like structure of naming authority and responsibilities arose. A tree like approach
is another obvious way to group our services. If each community (or host grouping)
has a single “gateway service that all services in that community (or host) know
about and which acts as the point of registry for all its local services then the
structure as shown in figure tree could be used.

Figure 3d) shows how service cross-awareness can be enabled using “gateway”
services which are “well-known” within their communities and which in turn “know”
the other services within their communities.

Other matrix structures that could arise are mentioned in [13, 1]. They indicate
different global properties and structures of the grid. It is certainly possible that
different groupings, aliases, permutations, and hosts may exist that serve more than
one community. Communities may also require more than one host.

Aliases could arise when two independent groupings realise they are referring
to the same service by different names. Strictly this should result in a smaller
matrix, but as a temporary measure we might consider a proxy or dummy entry
that appears in place of another service. All proxies for a service might would know
about the actual service, but the relationship need not be symmetric. A real service
need not know whether it is being accessed by another real service or by a proxy.
It becomes problematic if a real service is ever removed or disabled when it is being
used to support a proxy.

We can categorise the different regimes of service-service awareness as follows:
a) Simplest regime every server offers every service - knowledge matrix is dense. b)
Simple small community regime - everyone knows about everyone else in their own
community - spares block structured matrix. c) Communities of communities regime
- where a sparse structure links together dense communities. d) Almost Scalable
communities - a sparse structure is applied globally and locally and gateway services
have dense knowledge. e) Global scalable system where all parts of the knowledge
matrix are sparse and a small-world network links gateways which impose their own
internal community dense/sparse structure depending upon size of community.

5 Global Grid Scaling

Our design goal for a resource discovery system is a fully reachable resource knowl-
edge graph, implemented as efficiently as possible. Space efficiency requires avoid-
ing dense table storage, whereas access efficiency requires minimising the number
of “hops” across the graph are needed to find a particular service instance. In this
section we consider scaling issues - how many servers, services and communities and
what regimes are there on the present Internet and use this to speculate how the
global Grid of services might develop.

Table 3 shows the number of web pages as reported by the Google search engine
for search terms corresponding to the application domains in figure 1. The first
column shows how many web pages were reported as containing just the application
domain name, while the second has the number that purported to contain some

Managing Community Membership Information in a Small-World Grid 109

Application Web RAS
Domain Pages Pages
Linear Algebra 1,690,000 19,500
Simulations 4,320,000 140,000
GIS 1,880,000 147,000
Image Analysis 6,880,000 698,000
Computational Physics 1,240,000 97,000

Table 3: Number of web pages reported by Google (http://www.google.com) to
contain the name of the application domain and and also the string “remote access
services”. Searches completed on 10th June 2004 out of 4,285,199,774 web pages
indexed by Google.

extra search strings. While the numbers of web pages returned in each search is only
representative, it does serve to illustrate the huge number of not only communities
on the Internet, but also the number of members of each community.

It is safe to assume that the number of user communities and also the member-
ship within each community does not remain static for too long. For this reason
the major problem in maintaining information as to which services are available on
a grid is that of ensuring it is consistent. The two logical extremes are to maintain
all the information that is known about the services available on the system, and
to maintain no information about services. One one hand it is infeasible to require
all updates to the services one offers be broadcast to all members of the community
but on the other hand it is also infeasible to require services be found each time
they are used.

A scaling strategy that reduces the number of links while maximising the reach-
ability is desirable. Small-world approaches offer some exciting possibilities for such
a solution.

6 Small-Worlds Solutions

Traditional network models use regular grid-ed or tree-based structures for represen-
tation, where nodes in the network graph are linked only to their nearest neighbours.
We make the observation that typical hosts on the Internet maintain active knowl-
edge of only a very small number of hosts that are outside their direct local area.
In a graph context this counts as a nearest neighbour relationship. Bearing in mind
that DNS organises the Internet into a tree-based hierarchy we also find that some
distinguished hosts also maintain knowledge of other hosts that are not classified in
the local area network (or hence not strictly nearest neighbours). Through the use
of DNS hosts have the address of a node that is higher in the tree-based hierarchy
of domain names, in order to discover hosts from outside their local network.

If we consider how the representations of regular grids or tree-based hierarchies
can be modified then one minor modification is to add a number of direct links
between different links in the graph. As this is done, the graph will enter the realm
of small world networks [16]. Adding links is not the only way a graph can exhibit
small world effects: random links can be removed and also random links can be re-
wired. These modification strategies are reviewed in [12]. In this paper we restrict
ourselves to only considering the addition of links.

Community clustering is one mechanism that promises to reduce the effective
all-pairs distance for entities within a community. However we observe that even if
we allow the members of a community to know about all the other members (using
O(n2) graph links) then there are still latency effects when task requests go outside

Managing Community Membership Information in a Small-World Grid 110

the community to provide services.

Figure 5: A simulated space of five “communities” which may connect by chance,
or by addition of explicit shortcuts. Some services are isolated not having been
registered properly within their communities.

Figure 5 shows how five example communities have been cross linked with some
explicit small-world shortcut links. Each community may in fact have some straggler
service s that have developed separately and are not yet fully reachable. Gateway
nodes will help this, particularly if the gateways are linked in their own small-world
sub-structure.

Main criteria for performance is pairwise distance. A good metric is the all-pairs
distance for a graph. We can investigate this for small service discovery graphs,
however since algorithms for computing this scale as N3

S , we are limited practically
to graphs around a few thousand nodes, even with a supercomputer assistance.
We are unable to directly simulate realistic numbers of fully connected services.
In practice however the global grid will consist of a number of loosely connected
communities each one of which may be more strongly connected internally.

The shortcuts we can deliberately place on an otherwise loosely connected re-
source graph can make a dramatic difference both to its stability in terms of full-
connectedness, and also to the speed of access or reachability of a particular service.

Figure 7 shows the all-pairs distance measured in a system where each service
connects (knows about) each other service with probability p. Figure 8 shows the
mean cluster size as p is varied. Figure 6 shows the mean number of clusters.

Figure 5 shows the way in which communities may be clustered and connected
to each other. We can see that within communities there is essentially a fully-
connected graph of resources. This signifies that that within a community there is
almost complete knowledge of the resources that are available. However between
communities resources are not as easy to access. This means that when a resource

Managing Community Membership Information in a Small-World Grid 111

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

N
um

be
r

of
 C

lu
st

er
s

P

Averaged Number of Clusters (100 cfgs) in Random Model - N Connects to N with P

Figure 6: Mean number of clusters in a system where each service connects (knows
about) each other service with probability p.

inside one cluster needs to find a matching service that is not inside its own cluster,
the searching will take longer on average and also accessing the remote resources
will involve more cross-community hops. We believe this is the way in which more
and more communities will arrange themselves on a global grid system.

The Small-world approach can considerably augment the performance of our
resource discovery process. The rationale for small-world modifications is quite
simple: services, and the hosts (entities) they reside on will know only about a
small number of other entities by default. The typical mechanism that is used in
representing complex task graphs is simply to name the required entity, not where it
can be found [10]. Thus to find another entity a series of resource discovery requests
will need to be made, increasing with time as the entity is further away in terms of
graph distance. If a random link can point either directly to the required service,
or more likely, to a host that knows about the required service, then the search
time will be shortened. The search time has a physical property in the latency
of searching. We assume that the bandwidth that is achievable by the network
between any two hosts or services is constant but not the same. Thus the major
opportunity for enhancing the performance of any system is through eliminating
any wasted searching (resource discovery) or access time.

Figure 7 shows how the mean all-pairs distance, calculated using Dijkstra’s al-
gorithm, changes with the probability p that a random direct link is made between
any two random entities in the grid. This is directly analogous to the case un-
der consideration where an entity randomly points to another entity in the graph.
Ignoring any DNS-type resource discovery hierarchy, and only considering the ad-
dition of random links between services or hosts, the higher the probability of an

Managing Community Membership Information in a Small-World Grid 112

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

M
ea

n
D

ijk
st

ra
 D

is
ta

nc
e

P

Figure 7: Mean All-Pairs distance in a system where each service connects (knows
about) each other service with probability p.

entity pointing to another entity increases both the mean cluster size (figure 8) and
also the mean Dijkstra distances (figure 7) until a point is reached such that the
graph consists of one cluster. In practice having some cluster, implying that every
entity knows about each other entity, is impractical for space and efficiency reasons.
However we find that at lower connection probability (between 0.001 ≤ p ≤ 0.01)
the searching efficiency is much improved.

If we now allow the DNS-type resource discovery hierarchy, the main consid-
eration for performance is still the mean pairwise distance between entities in the
graph. The pair-wise distance corresponds to the number of queries that must
be made for a graph entity to either find, or communicate with, another entity.
The higher the pairwise distance the more intermediate hosts must be used for the
communication and the higher the latency will be in communications between the
original source and destination.

Being able to successfully find another service or hosts on the grid is the primary
aim of the model. In addition the system architecture needs to maintain a model
that is correct and fault tolerant. It would be disastrous if the system were to
suffer segmentation should a single host be unavailable. In computer networks fault
tolerance is provided by the addition of redundant links. Grid systems are built
on top of the Internet by necessity; fault tolerance is provided by the addition of
direct links between grid-ed hosts - it is left up to the Internet routing protocols to
organise the most efficient physical way of routing messages.

As a secondary, but still quite important concern, the issue of evolution must be
addressed. In terms of the model, this refers to the ability of the system to adjust
efficiently to the changing conditions of the global grid environment. Changes will

Managing Community Membership Information in a Small-World Grid 113

 0.1

 1

 10

 100

 1000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

M
ea

n
C

lu
st

er
 S

iz
e

P

Mean Cluster Size (100 cfgs) in Random Model - N Connects to N with P

Figure 8: Mean cluster size in a system where each service connects (knows about)
each other service with probability p.

typically involve the addition and removal of hosts, and of course the addition
and removal of the services that reside on the hosts. Services in the DISCWorld
environment are typically written in Java; the language’s portability means that
byte codes can be run on virtually on any platform. This compounds matters as
our model must be able to cope with services that have been migrated or even
copied between hosts in the grid.

A necessary feature of our model’s implementation is the ability to react effi-
ciently to the addition or deletion of hosts, services or communities. We are aware
of the equivalent problem in evolving computer networks, the so-called counting to
infinity problem. For this reason we find that the addition of new random cross-
community small-world links can help aid the system in evolving rapidly. This
technique is only possible due to the fact that the global grid consists of a num-
ber of loosely connected communities, with strong internal interconnections. The
cross-community links are used in the regular systolic resource discovery algorithm
to discover new and changed resources, where changes are able to percolate through
the system more rapidly due to the randomised small-world links.

7 Conclusions and Summary

We have discussed the significant problem of resource discovery in global grid sys-
tems. We note there is an ever-increasing number of Internet-based resources, a
good percentage of which will eventually be connected to a grid system quite possi-
bly arranged as well-connected groups of communities. Such communities will have
links to other communities. It is infeasible to maintain a completely connected

Managing Community Membership Information in a Small-World Grid 114

matrix of available resources in one computer’s memory, let-alone have this infor-
mation replicated across every participating host on the grid. Thus a sparse storage
mechanism is one practical storage option.

Representing the grid computing infrastructure as a small-world graph allows us
to maintain a tractable searchable information resource that effectively minimises
the searching time while maintaining a practical limit on the number of other re-
sources that must be known about to accomplish the searching. Our prototype
simulation of this model features uni-directional links that point from a source to a
destination node in the graph. In future work we will adapt the model to incorporate
bi-directional data pointers as afforded by the DRAM abstraction [10].

The global Grid is changing the way we approach all sorts of computing prob-
lems. We believe that small-world analysis of the emerging service infrastructure is
truly important for achieving a genuine global village of service communities.

References

[1] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H. “Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods”, SIAM,
Philadelphia, PA, 1994.

[2] Berman, F., Fox, G.C., and Hey, A.G.J. (Eds), “Grid Computing - Making the
Global Infrastructure a Reality”, Wiley, 2003, ISBN 0-470-85319-0.

[3] Cardelli, L. “Type Systems”, in Allen B. Tucker (Ed.): The Computer Science
and Engineering Handbook. CRC Press, 1997, ISBN: 0-8493-2909-4. Chapter
103, pp 2208-2236.

[4] E.W. Dijkstra. “A note on two problems in connextion with graphs” Nu-
merische Mathematik, 1:269–271, 1959.

[5] EUROGRID Project. http://www.eurogrid.org

[6] The Globus Alliance. http://www.globus.org

[7] GridBus Project. http://www.gridbus.org

[8] Hawick, K.A., James, H.A., Silis, A.J, Grove, D.A., Kerry, K.E., Mathew, J.E.,
Coddington, P.D., Patten, C.J., Hercus, J.F. and Vaughan, F.A., “DISCWorld:
An Environment for Service-Based Metacomputing,” Future Generation Com-
puting Systems (FGCS), 15:623–635, 1999.

[9] Hawick, K.A., James H.A. and Mathew, J.A., “Remote Data Access in Dis-
tributed Object-Oriented Middleware” in J. of Parallel and Distributed Com-
puting Practices 3, 3-19 (2002).

[10] James, H.A. “Scheduling in Metacomputing”, PhD Thesis, Department of
Computer Science, The University of Adelaide, Australia, 1999.

[11] James H.A and Hawick, K.A., “Data Futures in DISCWorld” in Proc. of High
Performance Computing and Networks (HPCN) Europe 2000, Amsterdam,
May 2000.

[12] James, H.A., Scogings C.J., and Hawick, K.A., “A Framework and Simula-
tion Engine for Studying Artificial Life” in Res Let in Info Math Sci, Massey
University, May 2004.

Managing Community Membership Information in a Small-World Grid 115

[13] Press, W.H., Teukolsky, S.A., Vetterling, W.T, and Flannery, B.P., “Numerical
Recipes in C. Second Edition”, Cambridge University Press, 1988.

[14] UK e-Science Grid Support Centre. http://www.grid-support.ac.uk

[15] UNICORE: Uniform Interface to Computing Reseources. http://unicore.-
sourceforge.net

[16] Watts, D.J., “Six Degrees - The Science of a Connected Age”, Pub William
Heinemann, 2003, ISBN 0-434-00908-3.

