
Res. Lett. Inf. Math. Sci., 2005, Vol.7, pp171-186

Available online at http://iims.massey.ac.nz/research/letters/
171

Evaluation of numerical integration

schemes for a partial integro-differential

equation

A. Elvin & C. Laing

Institute of Information & Mathematical Sciences
Massey University at Albany, Auckland, New Zealand.

Numerical methods are important in computational neuroscience where com-
plex nonlinear systems are studied. This report evaluates two methodologies,
finite differences and Fourier series, for numerically integrating a nonlinear
neural model based on a partial integro-differential equation. The stability
and convergence criteria of four finite difference methods is investigated and
their efficiency determined. Various ODE solvers in Matlab are used with the
Fourier series method to solve the neural model, with an evaluation of the
accuracy of the approximation versus the efficiency of the method. The two
methodologies are then compared.

1 Introduction

Some mathematical systems of equations, given their complexity, must be solved
using numerical computation techniques. This report explores the application of
two such techniques – finite difference methods and the Fourier series method.

Finite difference methods can be used to numerically solve an equation such as a
PDE by discretising both time and space into a grid with equal time steps and equal
spatial steps, then replacing derivatives with finite difference approximations. These
derivative approximations can be calculated in different ways, resulting in methods
with different criteria for stability and different truncation errors. We are interested
in evaluating the suitability of each method.

First, we introduce the heat equation as an often used example in the literature for
explaining the method of grid construction which permits the use of finite difference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

https://core.ac.uk/display/148639164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

172 A. Elvin & C. Laing

methods. We then outline the nonlinear neural model we are interested in.

The explicit, fully implicit and Crank-Nicolson finite difference methods, along with
a hybrid method we develop, are used to numerically integrate the nonlinear model.
The performance of each method is assessed in terms of stability, convergence to the
true solution, and the computing effort required.

The Fourier series method is then used to numerically solve the model. Various ODE
solvers within Matlab, for both stiff and non stiff problems, are applied and their ef-
ficiency assessed in terms of the desired accuracy of the Fourier series approximation.

The results obtained will be of assistance in refining the approach to the numerical
integration of various nonlinear models. We now introduce the heat equation and
show how a spatial/temporal grid is constructed.

2 The heat equation

Assume we have a thin bar of length L that is given an initial temperature and
insulated everywhere except the ends. We wish to see how the temperature of the
rod varies over time.

Let x be the spatial variable representing a point along the rod so that 0 < x < L.
Let u(x, t) be the temperature of the bar at position x at time t.

The partial differential equation

∂u

∂t
=

C2

L2

∂2u

∂x2

is used to model a one dimensional temperature progression where C/L represents
the thermal diffusivity of the rod. Thermal diffusivity depends upon the thermal
conductivity, density and specific heat capacity of the rod. To simplify our calcula-
tions we choose L = C so that the thermal diffusivity of the rod is 1.

The initial condition is

u(x, 0) = f(x)

where f(x) is the temperature at position x at time t = 0.

We assume the ends of the rod are kept at a fixed temperature of zero which gives
homogeneous Dirichlet boundary conditions of

u(0, t) = u(L, t) = 0 for all t > 0.

Evaluation of numerical integration schemes 173

We therefore wish to solve for the function u(x, t) such that

∂u

∂t
=

∂2u

∂x2

u(0, t) = u(L, t) = 0 for all t > 0 (1)

u(x, 0) = f(x).

In order to do this, we discretise over space by dividing the length L into n equal
intervals of length h such that

∆x =
L

n

and write xi = i∆x = ih for i = 0, 1, . . . , n.

To find the temperature of the bar at time T we discretise time T into m steps of
size k such that

∆t =
T

m

and write tj = j∆t = jk for j = 0, 1, . . . ,m.

A grid of (n + 1) spatial points by (m + 1) time points can now be constructed.
Letting vi,j be the approximate value of u at (xi, tj) in (1), the initial and boundary
conditions mean that vi,0, v0,j and vn,j are known for all i, j. This method of discreti-
sation produces a problem containing a finite number of function points to evaluate
which allows us to approximate spatial and time derivatives with finite difference
quotients and solve for vi,m.

A forward difference scheme, backward difference scheme, or average of the two can
be used, each with different stability criteria and/or truncation errors, can be used
to approximate the spatial and time derivatives. In the next sections, a neural model
is presented and finite difference methods are used to find a solution.

3 Overview of a neural model

Consider the one dimensional nonlinear neural model for the propagation of electrical
activity in neural tissue

∂u(x, t)

∂t
= K

∂2u

∂x2
− u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy, (2)

where
w(x) = e−b|x|(b sin(|x|) + cos(x)), (3)

f(u) = 2e−r/(u−th)2H(u− th). (4)

174 A. Elvin & C. Laing

In this model we have parameters K, b, th, r > 0, function H represents the Heavi-
side function, and u(x, t) : R× R+ → R.

A spatially homogeneous and isotropic system is assumed, where u(x, t) is a neural
field representing the local activity of a population of neurons at position x ∈ R at
time t, w(y) the strength of the connection or coupling between neurons separated
by distance y, and f(u(y, t)) the firing rate function of the neuron at position y ∈ R
at time t. It is assumed that the synaptic input current is a function of the pre-
synaptic firing rate function, with the nonlinear term on the right in (2) representing
the synaptic input.

Further discussion of this model, with K = 0, can be found in Laing et al (2002).
For K > 0, a preliminary investigation of the model is presented in Elvin (2004).

We will now find stable steady state solutions of (2) through numerical integration,
using finite difference methods, then a Fourier series approximation of the solution.

4 Finite difference methods

To find steady state solutions of (2) using finite difference methods, we take a finite
domain of x ∈ [−15π, 15π] and set an initial excitation profile of

u(x, 0) = 2 cos

(
Lx

15π

)
exp

(
−
(

Lx

15π

)2
)

(5)

The parameters are set at L = 3, b = 0.25, r = 0.095 and th = 1.5 for all numerical
work in this report. We also have Dirichlet boundary conditions of

u(−15π, t) = u(15π, t) = 0.

It is noted that there are many steady state solutions to this model and the size of
the time steps will influence which steady state is found. The desired stable steady
state solution for these methods is a three bump steady state and this acts as a
constraint upon the time step.

We wish to compare the efficiency and accuracy of four different finite difference
methods in order to gain insight into the most appropriate approach to solving the
neural model numerically. The derivation of the methods will not be covered here
as it is explained in numerous mathematical texts, with a good account being found
in Kincaid and Cheney (2001), Cooper (1998), and Rade and Westergren (2004).
In particular, Kincaid and Cheney provide a thorough stability and convergence

Evaluation of numerical integration schemes 175

analysis.

When evaluating the stability and convergence criteria of each finite difference meth-
ods being considered for the model in (2), we will first consider the stability criteria
for the heat equation, as this is more easily evaluated and provides a useful compar-
ison.

4.1 Explicit method

To apply the explicit method to the heat equation, we replace the derivatives in (1)
by forward difference approximations, therefore,

ut =
vi,j+1 − vi,j

k
+ O(k)

and

uxx =
vi+1,j − 2vi,j + vi−1,j

h2
+ O(h2)

where vij is the approximation to u(xi, tj) = u(ih, jk).

We solve for vi,j+1 for i = 1, 2, . . . , n− 1 with v0,j = vn,j = 0 and obtain the scheme

vi,j+1 = (1− 2s)vi,j + s(vi+1,j + vi−1,j) (6)

where s = k/h2 for time step k and spatial step h. This is unstable unless the
coefficient of vi,j is nonnegative and provides a stability criterion of s ≤ 1/2.

To find the stability of the method for the neural model in (2), the nonlinear term
formed by the integral ∫ ∞

−∞
w(x− y)f(u(y, t)) dy

is ignored and after replacing the derivatives by forward difference approximations,
we obtain the scheme

vj+1 = (1− k − 2sK)vij + sK(vi+1,j + vi−1,j).

This gives the matrix equation Vj+1 = AVj where A = (1− k)I − sKB and

B =

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2

 . (7)

176 A. Elvin & C. Laing

The method is stable if 1−k−2sK ≥ 0, therefore the condition for stability (ignoring
the effect of the nonlinear term) is

k ≤ h2

h2 + 2K

with truncation error of O(k) + O(h2). The stability condition demonstrates the
inverse relationship between the size of the time step, k, and the coefficient of the
spatial derivative, K.

To solve (2) numerically, the nonlinear term is evaluated at step j (the previous time
step) using the trapezoid rule, as this is very efficient and increasingly accurate as
h becomes smaller.

4.2 Fully implicit method

To construct the fully implicit method, we centre the difference quotient for the
second spatial derivative in (1) at (xi, tj+1), rather than at (xi, tj), giving

uxx =
vi+1,j+1 − 2vi,j+1 + vi−1,j+1

h2
+ O(h2). (8)

This creates the scheme

(1 + 2s)vi,j+1 − s(vi+1,j+1 + vi−1,j+1) = vi,j (9)

for i = 1, 2, . . . , n− 1 with v0,j = vn,j = 0, which is stable for all s ≥ 0.

To find the stability condition for (2), we ignore the nonlinear term again and replace
the second spatial derivative with the difference approximation of (8), giving the
scheme of

(1 + k + 2sK)vi,j+1 − sK(vi+1,j+1 + vi−1,j+1) = vi,j.

With B defined as in (7), we write A = (1 + k)I + sKB and obtain the matrix
equation AVj+1 = Vj. Given the eigenvalues of B are (1− cos(θi)), the eigenvalues
of A are

λi = 1 + k + 2sK(1− cos(θi)) > 1,

therefore the eigenvalues of A−1 are less than 1 and the fully implicit method is
stable for all s ≥ 0, with truncation error of O(k) + O(h2).

However, once the nonlinear term∫ ∞

−∞
w(x− y)f(u(y, t)) dy

Evaluation of numerical integration schemes 177

is included, the system is no longer one of linear equations and Newton’s method
must be used to solve the function g, say, such that

g(Vj+1) = A

[
Vj+1 +

Xj+1

2

]
−
[
Vj +

Xj

2

]
= 0

where Xj is the nonlinear term at the jth time level. The stability of the method is
now constrained by the Newton criteria for convergence and is therefore not stable
for all s ≥ 0 for (2).

4.3 Crank-Nicolson method

By combining the explicit and implicit schemes, the accuracy of the approximation
can be improved and larger step sizes in both spatial and time directions can be
taken. We do this by replacing the second spatial derivative with the mean of its
finite difference representations at the jth and (j + 1)th time levels

uxx =
vi+1,j+1 − 2vi,j+1 + vi−1,j+1 + vvi+1,j − 2vi,j + vi−1,j

2h2
+ O(h2). (10)

This gives the Crank-Nicolson finite difference scheme for the heat equation in (1)
of

−svi−1,j+1 + (1 + 2s)vi,j+1 − svi+1,j+1 = svi−1,j + (1− 2s)vi,j + svi+1,j (11)

for 0 ≤ i ≤ n + 1 and j ≥ 0, which is stable for all s ≥ 0.

To apply to our neural model, ignoring the nonlinear term, the second spatial deriva-
tive in (2) is approximated by (10), resulting in a difference scheme of

(2 + k + 2sK)vi,j+1 − sK(vi+1,j+1 + vi−1,j+1)

= (2− k − 2sK)vi,j + sK(vi+1,j + vi−1,j). (12)

Using the matrix B in (7), we write (12) in matrix form as

((2 + k)I + sKB)Vj+1 = ((2 + k)I − sKB)Vj

or

Vj+1 = ((2 + k)I + sKB)−1((2 + k)I − sKB)Vj. (13)

Defining the spectral radius of an n×n matrix A containing real or complex elements
with eigenvalues λ1, . . . , λn as

ρ(A) = max
1≤i≤n

|λi|,

178 A. Elvin & C. Laing

we then say the system (13) is stable if

ρ
((

(2 + k)I + sB)−1((2 + k)I − sB
))

< 1. (14)

Letting wi be the eigenvalues of B, this becomes the stability requirement

| ((2 + k)I + swi)
−1((2 + k)I − swi) |< 1.

Given wi = 2(1 − cos θi) (see Kincaid and Cheney), we have 0 < wi < 4, therefore
(14) holds and the Crank-Nicolson method is stable for all s ≥ 0 for this neural model
(when the nonlinear term is not included), with truncation error of O(k2) + O(h2).

Once again, inclusion of the nonlinear integral creates a nonlinear system of equa-
tions which must be solved using Newton’s method, creating a constraint on s,
therefore we can no longer claim stability for all s > 0.

4.4 Hybrid method

The need to use Newton’s method in the fully implicit and Crank-Nicolson methods
makes these methods much slower than the explicit method. To speed up the Crank-
Nicolson method, we take the nonlinear term at the jth time level only, creating the
linear system of equations

AVj+1 = Vj + Xj = V̂j

where Xj is the nonlinear term at the jth time level. Newton’s method is now not
required and this hybrid method can be solved effectively using LU decomposition.
This has speed comparable to the explicit method with stability and truncation
error similar to that of the Crank-Nicolson method. LU decomposition is used to
calculate matrix inversions where possible which can make this method very fast.

4.5 Results

These four methods are used to numerically solve the neural model in (2). The
restriction on the valid range of s for each method is still determined by the steady
state we wish to converge to as larger spatial steps will converge to different stable
steady states. Given that the fully implicit and Crank-Nicolson methods use New-
ton’s method, there is an upper bound on s to guarantee convergence to the desired
steady state.

Four computer programs were written in Matlab to numerically integrate the neural
model with an identical initial condition over 40 time units for various uniformly
discretised spatial grids. The maximum time step was used for each spatial step

Evaluation of numerical integration schemes 179

size, that is, the maximum value of s was used that would converge to the accurate
solution. Each method was evaluated for both a small and large value of K. The
log of CPU time versus the log of the number of spatial points for K = 0.05 was
graphed in Fig. 1.

Figure 1: Results of numerically integrating the neural model for K = 0.05.

It can be seen that the explicit and hybrid methods are much faster than the im-
plicit and Crank-Nicolson methods due to the use of LU decomposition rather than
Newton’s method. The Crank-Nicolson method is always faster than the fully im-
plicit method by a constant factor. Even though the strict stability criterion of the
explicit method means that the time step taken must be very small relative to the
spatial step, the explicit method is still faster than all other three methods.

The disadvantage of the explicit method in terms of the nonlinear neural model is
the severe constraint in the size of the coefficient of the second spatial derivative, K.
As K increases, the time step used for the explicit method reduces rapidly in order
to maintain stability. We are therefore interested in any advantage the other three
methods might offer here. To investigate this we compute the model again using
K = 0.45 in (2) as this is close to the maximum value of K where stable 3-bump
steady state solutions of the model still exist, as discussed in Elvin (2004). The
results can be seen in Fig. 2.

The advantage of a method which only needs carry out a single matrix inversion is

180 A. Elvin & C. Laing

Figure 2: Results of numerically integrating the neural model for K = 0.45.

clear when compared to those methods using Newton’s method. Surprisingly, for
larger K, the time step size for the fully implicit and Crank-Nicolson methods stay
relatively unchanged and the hybrid method becomes slightly more efficient. The
explicit method is fastest for small N , however, as N increases past a threshold, the
time step for the explicit method becomes rapidly smaller and the hybrid method
becomes the better performer.

5 Fourier series method

We now investigate the trigonometric approximation of the solution of the neural
model using the Fourier series which consists of sine and cosine functions. The
theory and techniques of Fourier series is examined in detail in Gowar and Baker
(1974). We are looking for a solution that is even about some point in space. As
the system is translationally invariant, we can choose that point to be x = 0 and
thus represent the solution by a cosine Fourier series.

5.1 Theory of Fourier series

Consider an even function f which is periodic over the domain [−π, π]. We wish to
find the finite Fourier series for f and therefore write the approximation to f over

Evaluation of numerical integration schemes 181

x ∈ [−π, π] as

f̂(x) = a0 +
M∑
i=1

ai cos(ix)

where the ai for i = 0, 1, . . . ,M are the Fourier coefficients. If the necessary inte-
grations can be carried out, these M Fourier coefficients are found by evaluating

a0 =
1

π

∫ π

−π

f(x)dx and

ai =
2

π

∫ π

−π

f(x) cos(ix)dx for i = 1, 2, . . . ,M. (15)

Gowar and Baker define a successful approximation as that where the distance
between the given function f and its Fourier series f̂ is small, that is,

‖ f − f̂ ‖< ε, ε > 0. (16)

The number of Fourier coefficients, M , is chosen to satisfy (16) for small ε.

5.2 Application to the neural model

Consider the neural model in (2) where x ∈ (−π, π). Let

û(x) = a0 +
M∑
i=1

ai cos(ix)

be an approximation to u.

After scaling to the smaller domain, the coupling function in (3) becomes

w(x) = e−15b|x|[b sin(15|x|) + cos(15x)]

and its Fourier series is found by using the formulae in (15) such that

ŵ(x) = b0 +
M∑
i=1

bi cos(ix),

where

b0 =
1

π

∫ π

−π

w(x)dx and

bi =
2

π

∫ π

−π

w(x) cos(ix)dx for i = 1, 2, . . . ,M. (17)

182 A. Elvin & C. Laing

Therefore

ŵ(x− y) = b0 +
M∑
i=1

bi cos(i(x− y))

and using a trigonometric identity this becomes

ŵ(x− y) = b0 +
M∑
i=1

bi[cos(ix) cos(iy) + sin(ix) sin(iy)].

Calculating the required partial derivatives and making the substitutions for the
functions u and w, the partial integro-differential equation (2), becomes

ȧ0 +
M∑
i=1

ȧi cos(ix) = −a0 −
M∑
i=1

ai cos(ix)−K

M∑
i=1

i2ai cos(ix)

+

∫ π

−π

(
b0 +

M∑
i=1

bi[cos(ix) cos(iy) + sin(ix) sin(iy)]

)
f

(
a0 +

M∑
i=1

ai cos(iy)

)
dy

which is rearranged to become

ȧ0 +
M∑
i=1

ȧi cos(ix) = −a0 −
M∑
i=1

ai cos(ix)−K
M∑
i=1

i2ai cos(ix)

+

∫ π

−π

b0f

(
a0 +

M∑
i=1

ai cos(iy)

)
dy

+
M∑
i=1

bi cos(ix)

∫ π

−π

cos(iy)f

(
a0 +

M∑
i=1

ai cos(iy)

)
dy

+
M∑
i=1

bi sin(ix)

∫ π

−π

sin(iy)f

(
a0 +

M∑
i=1

ai cos(iy)

)
dy.

Multiplying by cos(jx) and integrating over [−π, π] for j = 0, 1, . . . ,M , we obtain
the following nonlinear system of ODEs

ȧj = −aj(1 + Kj2) +

∫ π

−π

cos(jy)f

(
a0 +

M∑
i=1

ai cos(iy)

)
dy. (18)

Here we can write a as a column vector of the (M + 1) Fourier coefficients, a =
[a0, a1, . . . , aM]T .

Let J = [−1,−(1 + K),−(1 + 4K), . . . ,−(1 + M2K)]T and c be a column vector
such that its jth term is∫ π

−π

cos(jy)f

(
a0 +

M∑
i=1

ai cos(iy)

)
dy.

Evaluation of numerical integration schemes 183

The system in (18) can now be expressed in vector form as

ȧ = J · a + c (19)

where J · a represents element by element multiplication.

5.3 Results

A program was written in Matlab to apply an ODE solver to the system of ODEs
in (19). In order to evaluate the integral term, the standard Matlab routine for
numerical integration, QUADL, which uses adaptive Lobatto quadrature, and the
trapezoidal approximation method were evaluated. Under both methods, conver-
gence was obtained, however QUADL was found to be very slow therefore the faster
method of trapezoidal approximation method was chosen.

Six different ODE solvers were used for two different values of K, as before, with the
number of Fourier coefficients being varied. The larger M , the number of Fourier
coefficients in the approximation of u, the more accurate the approximation as given
by (16).

For small K (see Fig. 3), it was found that nonstiff ODE solvers are the most effec-
tive. ODE45, a one-step solver based upon the Runge-Kutta method, performs best
until a threshold value of M is reached where ODE113, a multi-step solver based
on the variable Adams-Bashforth-Moulton method, becomes the most effective. As
M increases further, ODE23, another Runge-Kutta based solver that may be more
effective in the presence of mild stiffness, improves on ODE45 also however ODE113
remains the most efficient. As M increases there is less differentiation between the
efficiency of the solvers, except for ODE23s which shows poor performance for all M .

For larger K, (see Fig. 4), there is increasing stiffness as M increases. For small M
(a less accurate approximation), ODE113, ODE23 and ODE45 are most effective.
Once M exceeds a threshold, ODE15s and ODE23t (ODE solvers suitable for stiff
problems) become much more efficient than the nonstiff solvers. Again, ODE23s
has very low performance.

6 Discussion

We investigated the stability and convergence conditions of the explicit, fully implicit
and Crank-Nicolson finite difference methods. A new hybrid method was developed
and all four methods applied to a nonlinear neural model.

184 A. Elvin & C. Laing

Figure 3: Using Fourier series method to solve the neural model for K = 0.05 using
various ODE solvers in Matlab.

Figure 4: Using Fourier series method to solve the neural model for K = 0.45 using
various ODE solvers in Matlab.

Evaluation of numerical integration schemes 185

The explicit and hybrid methods were found to be more efficient than the fully im-
plicit and Crank-Nicolson methods for all N , the number of spatial steps, over both
a small and large second spatial derivative coefficient, K, due to the nonlinearity
in the neural model. The explicit finite difference method has the advantage of
simplicity of programming and for small K is very efficient for all N . For larger
K, the hybrid method is the most efficient finite difference method once N passes
a threshold. Both the fully implicit and the Crank-Nicolson methods are much less
efficient due to the evaluation of the nonlinear term using Newton’s method.

We then investigated using a Fourier series approximation to the neural model. It
was found that the nonstiff ODE solvers are the most effective in solving the system
for small K. As K increases and the stiffness of the system grows, ODE solvers for
stiff systems become the most effective. For both small and large K, if a highly ac-
curate approximation is required (a large number of Fourier coefficients), multistep
solvers are the most efficient.

There are other considerations, however, when choosing between finite difference or
Fourier series methods. The finite difference methods evaluated all require storage
of large matrices in order to solve the system which can be a disadvantage if the sys-
tem is large. The Fourier series method requires less storage but may be perceived
as a conceptually more difficult method to implement given the need to evaluate
the nonlinear term. Constraints on computer memory may determine the choice of
method.

In terms of further work, the finite element method could be evaluated to see if it
offers any advantages over the finite difference and Fourier series methods.

This work was part of a Summer Scholar research project in 2004/2005 for Dr Carlo
Laing of the Institute of Information and Mathematical Sciences(IIMS), Massey
University, Albany campus, Auckland, New Zealand, and was funded by the Massey
University Research Fund and IIMS.

References

[1] C.R. Laing, W.C. Troy, B. Gutkin, and G.B. Ermentrout, Multiple Bumps in
a Neuronal Model of Working Memory, SIAM J. Appl. Math, Vol. 63 (2002),
No. 1, pp. 62-97

[2] D. Kincaid and W. Cheney (2001), Numerical Analysis: Mathematics of Sci-
entific Computing, 3rd edition, Brooks/Cole

[3] J.M. Cooper (1998), Introduction to Partial Differential Equations with MAT-
LAB, Birkhauser

186 A. Elvin & C. Laing

[4] L. Rade and B. Westergren (2004), Mathematics Handbook for Science and
Engineering, 5th edition, Springer

[5] A. Elvin (2004), PGDipSci Research Project: Pattern Formation in Neural
Models

[6] N.W. Gowar and J.E. Baker (1974), Fourier Series, Chatto & Windus Ltd with
William Collins Sons and Co. Ltd

