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Let λ = (λ1, · · · , λm) be a partition of k. Let rλ(n) denote the number of solutions in
integers of λ1x

2
1 + · · · + λmx2

m = n, and let tλ(n) denote the number of solutions in non
negative integers of λ1x1(x1 + 1)/2 + · · ·+ λmxm(xm + 1)/2 = n. We prove that if 1 ≤ k ≤ 7,
then there is a constant cλ, depending only on λ, such that rλ(8n + k) = cλtλ(n), for all
integers n.

1 Introduction

Let λ = (λ1, · · · , λm) be a partition of k. That is, λ1, · · · , λm are integers satisfying λ1 ≥ · · · ≥
λm > 0, λ1 + · · ·+ λm = k. For any integer n, let rλ(n) denote the number of solutions in integers
of

λ1x
2
1 + · · ·+ λmx

2
m = n,

and let tλ(n) denote the number of solutions in non negative integers of

λ1
x1(x1 + 1)

2
+ · · ·+ λm

xm(xm + 1)
2

= n.

The generating functions for rλ(n) and tλ(n) are

∞∑
n=0

rλ(n)qn = φ(qλ1) · · ·φ(qλm),

∞∑
n=0

tλ(n)qn = ψ(qλ1) · · ·ψ(qλm),

where

φ(q) =
∞∑

j=−∞
qj2
, ψ(q) =

∞∑
j=0

qj(j+1)/2.

Observe that if λ1 = · · · = λm = 1, then rλ(n) (resp. tλ(n)) is the number of representations of n
as a sum of m squares (resp. m triangular numbers).
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The purpose of this article is to present the following result.

Theorem 1
If 1 ≤ k ≤ 7 and λ is a partition of k, then there exists a constant cλ, depending only on λ, such
that

rλ(8n+ k) = cλtλ(n),

for all integers n. Setting n = 0 we see that the value of cλ is given by cλ = rλ(k).

2 Examples

1. Let di,j(n) denote the number of divisors d of n with d ≡ i (mod j). ¿From (7) we have

r(2,1)(n) = 2(d1,8(n) + d3,8(n)− d5,8(n)− d7,8(n)),
r(3,1)(n) = 2(d1,3(n)− d2,3(n)) + 4(d4,12(n)− d8,12(n)),

while (1) gives

t(2,1)(n) = d1,8(8n+ 3)− d7,8(8n+ 3),
t(3,1)(n) = d1,6(2n+ 1)− d5,6(2n+ 1).

Observe that d1,8(8n+ 3) = d3,8(8n+ 3) and d5,8(8n+ 3) = d7,8(8n+ 3). This implies

r(2,1)(8n+ 3)
= 2(d1,8(8n+ 3) + d3,8(8n+ 3)− d5,8(8n+ 3)− d7,8(8n+ 3))
= 4(d1,8(8n+ 3)− d7,8(8n+ 3))
= 4t(2,1)(n).

This is Theorem 1 for the partition λ = (2, 1), and c(2,1) = 4.

Similarly, observe that

d4,12(8n+ 4) = d1,3(2n+ 1), d8,12(8n+ 4) = d2,3(2n+ 1),

d1,3(8n+ 4)− d2,3(8n+ 4) = d1,3(2n+ 1)− d2,3(2n+ 1),

and
d1,3(2n+ 1) = d1,6(2n+ 1), d2,3(2n+ 1) = d5,6(2n+ 1).

Therefore

r(3,1)(8n+ 4)
= 2(d1,3(8n+ 4)− d2,3(8n+ 4)) + 4(d4,12(8n+ 4)− d8,12(8n+ 4))
= 2(d1,3(2n+ 1)− d2,3(2n+ 1)) + 4(d1,3(2n+ 1)− d2,3(2n+ 1))
= 6(d1,3(2n+ 1)− d2,3(2n+ 1))
= 6(d1,6(2n+ 1)− d5,6(2n+ 1))
= 6t(3,1)(n).

This is Theorem 1 for the partition λ = (3, 1), and c(3,1) = 6.

These examples motivated us to discover Theorem 1.
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2. Let λ = (1, · · · , 1) be the partition consisting of k 1’s. In this case rλ(n) = rk(n) and
tλ(n) = tk(n), where rk(n) and tk(n) are the number of representations of n as a sum of k
squares, and as a sum of k triangular numbers, respectively. Then it was shown in (2), (3)
that

rk(8n+ k) = 2k−1

{
2 +

(
k

4

)}
tk(n)

for all n, provided 1 ≤ k ≤ 7. Thus c(1,··· ,1) = 2k−1
{

2 +
(
k
4

)}
.

3. We conclude with tables listing the values of the constants cλ:

λ (1)
cλ 2

λ (2) (1, 1)
cλ 2 4

λ (3) (2, 1) (1, 1, 1)
cλ 2 4 8

λ (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)
cλ 2 6 4 12 24

λ (5) (4, 1) (3, 2) (3, 1, 1) (2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)
cλ 2 4 4 16 8 40 112

λ (6) (5, 1) (4, 2) (4, 1, 1) (3, 3) (3, 2, 1) (3, 1, 1, 1)
cλ 2 4 4 8 4 12 40

(2, 2, 2) (2, 2, 1, 1) (2, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)
8 32 144 544

λ (7) (6, 1) (5, 2) (5, 1, 1) (4, 3) (4, 2, 1) (4, 1, 1, 1)
cλ 2 4 4 8 4 8 16

(3, 3, 1) (3, 2, 2) (3, 2, 1, 1) (3, 1, 1, 1, 1) (2, 2, 2, 1)
16 8 40 112 16

(2, 2, 1, 1, 1) (2, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1)
128 544 2368

3 Technique of proof

We illustrate the technique of proof by proving Theorem 1 for the case
λ = (3, 2, 1, 1). Proofs for all the other partitions are similar, and in most cases simpler. The
proofs all make use of various parts of the following lemma.

Lemma

φ(q) = φ(q4) + 2qψ(q8),

φ(q)2 = φ(q2)2 + 4qψ(q4)2,

φ(q)ψ(q2) = ψ(q)2,

ψ(q)ψ(q3) = φ(q6)ψ(q4) + qψ(q12)φ(q2).

Proof
The first three parts can be obtained by combining various results in (5, p. 40, Entry 25). See
(2) for the specific details. A proof of the fourth part is given in (5, p. 69 , Eq. (36.8)) or (6,
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Preliminary lemmas, part (xxxiii)).

Proof of Theorem 1 in the case λ = (3, 2, 1, 1)
Using the generating function for r(3,2,1,1)(n) and the first two parts of the Lemma, we obtain

∞∑
n=0

r(3,2,1,1)(n)qn

= φ(q3)φ(q2)φ(q)2

=
[
φ(q12) + 2q3ψ(q24)

] [
φ(q8) + 2q2ψ(q16)

] [
φ(q4) + 2qψ(q8)

]2
=

[
φ(q48) + 2q12ψ(q96) + 2q3ψ(q24)

] [
φ(q8) + 2q2ψ(q16)

]
×

[
φ(q4)2 + 4qφ(q4)ψ(q8) + 4q2ψ(q8)2

]
=

[
φ(q48) + 2q12ψ(q96) + 2q3ψ(q24)

] [
φ(q8) + 2q2ψ(q16)

]
×

[
φ(q8)2 + 4q4ψ(q16)2 + 4q(φ(q16) + 2q4ψ(q32))ψ(q8) + 4q2ψ(q8)2

]
.

Extract the terms in which the power of q is congruent to 7 (mod 8), divide by q7 and replace q8

by q, to obtain

∞∑
n=0

r(3,2,1,1)(8n+ 7)qn = 16φ(q6)ψ(q4)ψ(q2)ψ(q)

+16qψ(q12)φ(q2)ψ(q2)ψ(q) + 8ψ(q3)ψ(q2)2φ(q) + 16ψ(q3)ψ(q2)ψ(q)2.

Now use the third and fourth parts of the Lemma to obtain

∞∑
n=0

r(3,2,1,1)(8n+ 7)qn

= 16
[
φ(q6)ψ(q4) + qψ(q12)φ(q2)

]
ψ(q2)ψ(q) + 8ψ(q3)ψ(q2)

[
φ(q)ψ(q2)

]
+16ψ(q3)ψ(q2)ψ(q)2

= 16ψ(q3)ψ(q2)ψ(q)2 + 8ψ(q3)ψ(q2)ψ(q)2 + 16ψ(q3)ψ(q2)ψ(q)2

= 40ψ(q3)ψ(q2)ψ(q)2

= 40
∞∑

n=0

t(3,2,1,1)(n)qn.

This proves Theorem 1 for the partition λ = (3, 2, 1, 1), and we see that
c(3,2,1,1) = 40.

4 Concluding remarks

If λ = (λ1, · · · , λm) is a partition of k = 8 and gcd(λ1, · · · , λm) = 1, then it is straightforward
to verify, by checking each partition one at a time, that there does not exist a constant cλ such
that rλ(8n+ 8) = cλtλ(n) for all n. We conjecture that Theorem 1 does not hold for any partition
λ = (λ1, · · · , λm) of k, for which k ≥ 8 and gcd(λ1, · · · , λm) = 1. This conjecture is known to be
true when λ1 = · · ·λm = 1, m ≥ 8; see (4).
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