General relations between sums of squares and sums of triangular numbers

Chandrashekar Adiga ${ }^{1}$, Shaun Cooper ${ }^{2}$ \& Jung Hun Han ${ }^{1}$
${ }^{1}$ Department of Studies in Mathematics
University of Mysore, Manasagangotri, Mysore 570 006, India*
${ }^{2}$ Institute of Information and Mathematical Sciences
Massey University at Albany, Auckland, New Zealand ${ }^{\dagger}$

Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ be a partition of k. Let $r_{\lambda}(n)$ denote the number of solutions in integers of $\lambda_{1} x_{1}^{2}+\cdots+\lambda_{m} x_{m}^{2}=n$, and let $t_{\lambda}(n)$ denote the number of solutions in non negative integers of $\lambda_{1} x_{1}\left(x_{1}+1\right) / 2+\cdots+\lambda_{m} x_{m}\left(x_{m}+1\right) / 2=n$. We prove that if $1 \leq k \leq 7$, then there is a constant c_{λ}, depending only on λ, such that $r_{\lambda}(8 n+k)=c_{\lambda} t_{\lambda}(n)$, for all integers n.

1 Introduction

Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ be a partition of k. That is, $\lambda_{1}, \cdots, \lambda_{m}$ are integers satisfying $\lambda_{1} \geq \cdots \geq$ $\lambda_{m}>0, \lambda_{1}+\cdots+\lambda_{m}=k$. For any integer n, let $r_{\lambda}(n)$ denote the number of solutions in integers of

$$
\lambda_{1} x_{1}^{2}+\cdots+\lambda_{m} x_{m}^{2}=n
$$

and let $t_{\lambda}(n)$ denote the number of solutions in non negative integers of

$$
\lambda_{1} \frac{x_{1}\left(x_{1}+1\right)}{2}+\cdots+\lambda_{m} \frac{x_{m}\left(x_{m}+1\right)}{2}=n .
$$

The generating functions for $r_{\lambda}(n)$ and $t_{\lambda}(n)$ are

$$
\begin{aligned}
& \sum_{n=0}^{\infty} r_{\lambda}(n) q^{n}=\phi\left(q^{\lambda_{1}}\right) \cdots \phi\left(q^{\lambda_{m}}\right) \\
& \sum_{n=0}^{\infty} t_{\lambda}(n) q^{n}=\psi\left(q^{\lambda_{1}}\right) \cdots \psi\left(q^{\lambda_{m}}\right)
\end{aligned}
$$

where

$$
\phi(q)=\sum_{j=-\infty}^{\infty} q^{j^{2}}, \quad \psi(q)=\sum_{j=0}^{\infty} q^{j(j+1) / 2}
$$

Observe that if $\lambda_{1}=\cdots=\lambda_{m}=1$, then $r_{\lambda}(n)$ (resp. $t_{\lambda}(n)$) is the number of representations of n as a sum of m squares (resp. m triangular numbers).

[^0]The purpose of this article is to present the following result.

Theorem 1

If $1 \leq k \leq 7$ and λ is a partition of k, then there exists a constant c_{λ}, depending only on λ, such that

$$
r_{\lambda}(8 n+k)=c_{\lambda} t_{\lambda}(n),
$$

for all integers n. Setting $n=0$ we see that the value of c_{λ} is given by $c_{\lambda}=r_{\lambda}(k)$.

2 Examples

1. Let $d_{i, j}(n)$ denote the number of divisors d of n with $d \equiv i(\bmod j)$. ¿From (7) we have

$$
\begin{aligned}
r_{(2,1)}(n) & =2\left(d_{1,8}(n)+d_{3,8}(n)-d_{5,8}(n)-d_{7,8}(n)\right), \\
r_{(3,1)}(n) & =2\left(d_{1,3}(n)-d_{2,3}(n)\right)+4\left(d_{4,12}(n)-d_{8,12}(n)\right),
\end{aligned}
$$

while (1) gives

$$
\begin{aligned}
t_{(2,1)}(n) & =d_{1,8}(8 n+3)-d_{7,8}(8 n+3), \\
t_{(3,1)}(n) & =d_{1,6}(2 n+1)-d_{5,6}(2 n+1) .
\end{aligned}
$$

Observe that $d_{1,8}(8 n+3)=d_{3,8}(8 n+3)$ and $d_{5,8}(8 n+3)=d_{7,8}(8 n+3)$. This implies

$$
\begin{aligned}
& r_{(2,1)}(8 n+3) \\
& \quad=2\left(d_{1,8}(8 n+3)+d_{3,8}(8 n+3)-d_{5,8}(8 n+3)-d_{7,8}(8 n+3)\right) \\
& =4\left(d_{1,8}(8 n+3)-d_{7,8}(8 n+3)\right) \\
& =4 t_{(2,1)}(n)
\end{aligned}
$$

This is Theorem 1 for the partition $\lambda=(2,1)$, and $c_{(2,1)}=4$.
Similarly, observe that

$$
\begin{gathered}
d_{4,12}(8 n+4)=d_{1,3}(2 n+1), \quad d_{8,12}(8 n+4)=d_{2,3}(2 n+1), \\
d_{1,3}(8 n+4)-d_{2,3}(8 n+4)=d_{1,3}(2 n+1)-d_{2,3}(2 n+1),
\end{gathered}
$$

and

$$
d_{1,3}(2 n+1)=d_{1,6}(2 n+1), \quad d_{2,3}(2 n+1)=d_{5,6}(2 n+1) .
$$

Therefore

$$
\begin{aligned}
& r_{(3,1)}(8 n+4) \\
& =2\left(d_{1,3}(8 n+4)-d_{2,3}(8 n+4)\right)+4\left(d_{4,12}(8 n+4)-d_{8,12}(8 n+4)\right) \\
& =2\left(d_{1,3}(2 n+1)-d_{2,3}(2 n+1)\right)+4\left(d_{1,3}(2 n+1)-d_{2,3}(2 n+1)\right) \\
& =6\left(d_{1,3}(2 n+1)-d_{2,3}(2 n+1)\right) \\
& =6\left(d_{1,6}(2 n+1)-d_{5,6}(2 n+1)\right) \\
& =6 t_{(3,1)}(n) .
\end{aligned}
$$

This is Theorem 1 for the partition $\lambda=(3,1)$, and $c_{(3,1)}=6$.
These examples motivated us to discover Theorem 1.
2. Let $\lambda=(1, \cdots, 1)$ be the partition consisting of k 's. In this case $r_{\lambda}(n)=r_{k}(n)$ and $t_{\lambda}(n)=t_{k}(n)$, where $r_{k}(n)$ and $t_{k}(n)$ are the number of representations of n as a sum of k squares, and as a sum of k triangular numbers, respectively. Then it was shown in (2), (3) that

$$
r_{k}(8 n+k)=2^{k-1}\left\{2+\binom{k}{4}\right\} t_{k}(n)
$$

for all n, provided $1 \leq k \leq 7$. Thus $c_{(1, \cdots, 1)}=2^{k-1}\left\{2+\binom{k}{4}\right\}$.
3. We conclude with tables listing the values of the constants c_{λ} :

λ	(1)						
c_{λ}	2	\quad	λ	(2)	$(1,1)$		
:---:	:---:	:---:					
c_{λ}	2	4	\quad	λ	(3)	$(2,1)$	$(1,1,1)$
:---:	:---:	:---:	:---:				
c_{λ}	2	4	8				

λ	(4)	$(3,1)$	$(2,2)$	$(2,1,1)$	$(1,1,1,1)$
c_{λ}	2	6	4	12	24

λ	(5)	$(4,1)$	$(3,2)$	$(3,1,1)$	$(2,2,1)$	$(2,1,1,1)$	$(1,1,1,1,1)$
c_{λ}	2	4	4	16	8	40	112

λ	(6)	$(5,1)$	$(4,2)$	$(4,1,1)$	$(3,3)$	$(3,2,1)$	$(3,1,1,1)$
c_{λ}	2	4	4	8	4	12	40

$(2,2,2)$	$(2,2,1,1)$	$(2,1,1,1,1)$	$(1,1,1,1,1,1)$
8	32	144	544

λ	(7)	$(6,1)$	$(5,2)$	$(5,1,1)$	$(4,3)$	$(4,2,1)$	$(4,1,1,1)$
c_{λ}	2	4	4	8	4	8	16

$(3,3,1)$	$(3,2,2)$	$(3,2,1,1)$	$(3,1,1,1,1)$	$(2,2,2,1)$
16	8	40	112	16

$(2,2,1,1,1)$	$(2,1,1,1,1,1)$	$(1,1,1,1,1,1,1)$
128	544	2368

3 Technique of proof

We illustrate the technique of proof by proving Theorem 1 for the case
$\lambda=(3,2,1,1)$. Proofs for all the other partitions are similar, and in most cases simpler. The proofs all make use of various parts of the following lemma.

Lemma

$$
\begin{gathered}
\phi(q)=\phi\left(q^{4}\right)+2 q \psi\left(q^{8}\right) \\
\phi(q)^{2}=\phi\left(q^{2}\right)^{2}+4 q \psi\left(q^{4}\right)^{2}, \\
\phi(q) \psi\left(q^{2}\right)=\psi(q)^{2} \\
\psi(q) \psi\left(q^{3}\right)=\phi\left(q^{6}\right) \psi\left(q^{4}\right)+q \psi\left(q^{12}\right) \phi\left(q^{2}\right) .
\end{gathered}
$$

Proof

The first three parts can be obtained by combining various results in (5, p. 40, Entry 25). See (2) for the specific details. A proof of the fourth part is given in (5, p. 69 , Eq. (36.8)) or (6,

Preliminary lemmas, part (xxxiii)).

Proof of Theorem 1 in the case $\lambda=(3,2,1,1)$
Using the generating function for $r_{(3,2,1,1)}(n)$ and the first two parts of the Lemma, we obtain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} r_{(3,2,1,1)}(n) q^{n} \\
= & \phi\left(q^{3}\right) \phi\left(q^{2}\right) \phi(q)^{2} \\
= & {\left[\phi\left(q^{12}\right)+2 q^{3} \psi\left(q^{24}\right)\right]\left[\phi\left(q^{8}\right)+2 q^{2} \psi\left(q^{16}\right)\right]\left[\phi\left(q^{4}\right)+2 q \psi\left(q^{8}\right)\right]^{2} } \\
= & {\left[\phi\left(q^{48}\right)+2 q^{12} \psi\left(q^{96}\right)+2 q^{3} \psi\left(q^{24}\right)\right]\left[\phi\left(q^{8}\right)+2 q^{2} \psi\left(q^{16}\right)\right] } \\
& \times\left[\phi\left(q^{4}\right)^{2}+4 q \phi\left(q^{4}\right) \psi\left(q^{8}\right)+4 q^{2} \psi\left(q^{8}\right)^{2}\right] \\
= & {\left[\phi\left(q^{48}\right)+2 q^{12} \psi\left(q^{96}\right)+2 q^{3} \psi\left(q^{24}\right)\right]\left[\phi\left(q^{8}\right)+2 q^{2} \psi\left(q^{16}\right)\right] } \\
& \times\left[\phi\left(q^{8}\right)^{2}+4 q^{4} \psi\left(q^{16}\right)^{2}+4 q\left(\phi\left(q^{16}\right)+2 q^{4} \psi\left(q^{32}\right)\right) \psi\left(q^{8}\right)+4 q^{2} \psi\left(q^{8}\right)^{2}\right] .
\end{aligned}
$$

Extract the terms in which the power of q is congruent to $7(\bmod 8)$, divide by q^{7} and replace q^{8} by q, to obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} & r_{(3,2,1,1)}(8 n+7) q^{n}=16 \phi\left(q^{6}\right) \psi\left(q^{4}\right) \psi\left(q^{2}\right) \psi(q) \\
& +16 q \psi\left(q^{12}\right) \phi\left(q^{2}\right) \psi\left(q^{2}\right) \psi(q)+8 \psi\left(q^{3}\right) \psi\left(q^{2}\right)^{2} \phi(q)+16 \psi\left(q^{3}\right) \psi\left(q^{2}\right) \psi(q)^{2}
\end{aligned}
$$

Now use the third and fourth parts of the Lemma to obtain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} r_{(3,2,1,1)}(8 n+7) q^{n} \\
= & 16\left[\phi\left(q^{6}\right) \psi\left(q^{4}\right)+q \psi\left(q^{12}\right) \phi\left(q^{2}\right)\right] \psi\left(q^{2}\right) \psi(q)+8 \psi\left(q^{3}\right) \psi\left(q^{2}\right)\left[\phi(q) \psi\left(q^{2}\right)\right] \\
& \quad+16 \psi\left(q^{3}\right) \psi\left(q^{2}\right) \psi(q)^{2} \\
= & 16 \psi\left(q^{3}\right) \psi\left(q^{2}\right) \psi(q)^{2}+8 \psi\left(q^{3}\right) \psi\left(q^{2}\right) \psi(q)^{2}+16 \psi\left(q^{3}\right) \psi\left(q^{2}\right) \psi(q)^{2} \\
= & 40 \psi\left(q^{3}\right) \psi\left(q^{2}\right) \psi(q)^{2} \\
= & 40 \sum_{n=0}^{\infty} t_{(3,2,1,1)}(n) q^{n} .
\end{aligned}
$$

This proves Theorem 1 for the partition $\lambda=(3,2,1,1)$, and we see that $c_{(3,2,1,1)}=40$.

4 Concluding remarks

If $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ is a partition of $k=8$ and $\operatorname{gcd}\left(\lambda_{1}, \cdots, \lambda_{m}\right)=1$, then it is straightforward to verify, by checking each partition one at a time, that there does not exist a constant c_{λ} such that $r_{\lambda}(8 n+8)=c_{\lambda} t_{\lambda}(n)$ for all n. We conjecture that Theorem 1 does not hold for any partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ of k, for which $k \geq 8$ and $\operatorname{gcd}\left(\lambda_{1}, \cdots, \lambda_{m}\right)=1$. This conjecture is known to be true when $\lambda_{1}=\cdots \lambda_{m}=1, m \geq 8$; see (4).

Acknowledgement

The second author thanks the Department of Studies in Mathematics, University of Mysore, for warm hospitality during his visit.

References

[1] Chandrashekar Adiga and K. R. Vasuki, On sums of triangular numbers, The Mathematics Student, 70, (2001), 185-190.
[2] P. Barrucand, S. Cooper and M. Hirschhorn, Relations between squares and triangles, Discrete Math. 248 (2002), no. 1-3, 245-247.
[3] P. T. Bateman and M. I. Knopp, Some new old-fashioned modular identities, Ramanujan J. 2 (1998), no. 1-2, 247-269.
[4] P. T. Bateman, B. A. Datskovsky and M. I. Knopp, Sums of squares and the preservation of modularity under congruence restrictions, Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999), 59-71, Dev. Math., 4, Kluwer Acad. Publ., Dordrecht, 2001.
[5] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[6] S. Cooper and M. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math. 274, (2004), 9-24.
[7] M. Hirschhorn, Partial fractions and four classical theorems of number theory, Amer. Math. Monthly 107 (2000), no. 3, 260-264.

[^0]: *Email addresses: c_adiga@hotmail.com, jhan176@yahoo.com
 ${ }^{\dagger}$ s.cooper@massey.ac.nz

