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Modelling of wet granulation requires the rate of agglomerate coalescence to be estimated.
Coalescence is dependent on the frequency of collisions that occur, and the fraction of collisions
which result in coalescence. The collision rate is a function of granulator kinetics and powder
properties, while the coalescence success rate is dependent on factors including the Stokes
number and particle geometry. This work investigates an aspect of the geometry by examining
the distribution of liquid on the surface of agglomerates in the capillary state. Agglomerates
are created by adding particles, one at a time, about a central tetrahedral arrangement of
four primary particles. For a given agglomerate, the wetted fraction of surface area, defined
as the wetness, is evaluated using an approximate fluid surface. Packing density and binder
saturation parameters are incorporated into the model. Given a number of primary particles
and the volume of binder in a particle, the agglomerate wetness is able to be estimated using
computational geometry.

1 INTRODUCTION

In granulation binder content and binder viscosity interact in complex ways, affecting the con-
solidation rate and the final extent of consolidation (1). Granule growth is considered to be due
to coalescence and breakage, with a system eventually reaching an equilibrium state. Models of
growth regard granules as either rigid (2) or plastic (3), but these assume the presence of a continu-
ous layer of liquid at the contact interface. The liquid acts to dissipate some of the collision energy.
In plastic collisions, deformation further dissipates the collision energy. Simons and Fairbrother (4)
define successful coalescence to have occurred when the rupture energy of a liquid bridge formed
between granules is greater than the kinetic energy of impact. None of these models define a real-
istic liquid surface for granules; instead they rely on assuming a smooth surfaced granule which is
covered by a binder of uniform thickness. Thorton and Ning (5) produce a granule with a pseudo
realistic appearance, but use an adhesion energy rather than a liquid surface. Thus, there is a need
to define a realistic agglomerate surface which is formed from both wet and dry regions. During
consolidation, the ratio of these wet to dry regions will change.

In this paper, a description of the algorithm for building agglomerates is detailed, where primary
particles are added to the granule one at a time. This is analogous to the layering mechanism where
agglomerates increase in size primarily as the result of single primary particle contacts. Due to
the stochastic motion of particles in a granulator, primary particles are equally likely to collide
with an agglomerate from any direction, and hence the long term average is to produce granules
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which are closely packed and spherical. The calculation of the binder fluid surface, along with the
respective volume and surface area occupied by the primary particles and binder fluid, is discussed
in a later section. In performing these calculations, the probability of agglomerate coalescence is
able to be estimated.

In this model, agglomerates consist of primary particles (spheres) and binder fluid, where the
fluid is formed by a union of tetrahedral segments. The starting configuration is the tetrahedral
arrangement of 4 particles as illustrated in figure 59(a), and additional particles are added to
the agglomerate individually. As a new particle is added, fluid segments form between the new
particle and existing particles of the agglomerate. The minimum distance between sphere centres
is defined by σ = 2R + s, where R is the radius of the equally sized primary particles and s is
the minimum separation between spheres. At a given stage in construction, a matrix S stores the
Cartesian coordinates of the primary particles as row vectors, and the fluid surface is defined by
three matrices, T , F and E. For each fluid segment, T stores the four vertices of the tetrahedra
in terms of indices into S. Each row entry in F defines a fluid surface face, where the first three
entries of the row refer to the face vertices as indices into S. Additional information stored in
an F entry is the outward pointing normal vector of the face, an estimate point for an additional
particle (if the face is subsequently selected to bond to a new particle), and a flag as to whether
the face is internal (1) or external (0). Faces become internal when a new particle bonds with the
agglomerate, forming new external faces. An edge matrix E is also maintained; this matrix is used
for viewing the agglomerate only, and is not involved in the algorithm for adding new particles.
The estimate point for a new particle ei to be added to face fi is obtained from the geometric
mid-point O of the three vertices on the face, and the minimum distance between spheres σ. This
yields an estimate point for the added particles O+niH, where x is the distance from a face vertex
to the midpoint, ni is the normal vector and H is the estimated height above the face,

√
σ2 − x2.

In the initial case shown in figure 59(a), matrices T , F and E appear as follows ;

T4 =
[

1 2 3 4
]
, F4 =


1 2 3 n1 e1 1
1 3 4 n2 e2 1
1 2 4 n3 e3 1
2 3 4 n4 e4 1

, E4 =


1 2
1 3
1 4
2 3
2 4
3 4

 ,

where ni is the outward pointing normal vector of face i, ei is the estimate point for a new particle
on face i, and the final column of F indicates that all faces are external for the initial arrangement.
The subscript N on the T , F and E matrices refer to the matrices for an N particle agglomerate.

When adding a fifth particle to face with index 1 (face [1 2 3]), a new tetrahedron is added,
face 1 becomes internal, and 3 faces and 3 edges are added. Figure 59 shows the original (or
base) tetrahedron for the 4 particle case on the left, and the 5 particle case is shown on the right.
Following the addition of the 5th particle, matrices T , F , and E are updated as follows ;

T5 =
[

1 2 3 4
2 3 4 5

]
, F5 =



1 2 3 n1 e1 0
1 3 4 n2 e2 1
1 2 4 n3 e3 1
2 3 4 n4 e4 1
5 1 2 n5 e5 1
5 1 3 n6 e6 1
5 2 3 n7 e7 1


, E5 =



1 2
1 3
1 4
3 4
2 3
2 4
1 5
2 5
3 5


.
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Figure 59: The tetrahedron on the left defines placement of the spheres for primary particles 1-4.
When a 5th particle is added, the arrangement is given by the 2 tetrahedra (as on the right).

2 AGGLOMERATE GROWTH ALGORITHM

Agglomerates grow by adding particles to an existing agglomerate. To maintain spherical growth
behaviour, the incoming particle approaches the first external face f ∈ F , as this is approximately
the closest external face to the centre of the agglomerate. In the simple case where the addition
of a particle results in the formation of one new tetrahedra, the coordinates of the new particle
are given by the estimate position for face f , ei. In more complex cases, the incoming particle
forms contact with more than one face, resulting in more than one tetrahedra. The new particle
position is then given by the solution to an optimisation problem which is discussed later. Tests
with all neighbouring faces of f are used to determine how many tetrahedra are to be added as
a result of the new particle. The test consists of two scenarios which are compared on the basis
of the regularity of the resulting tetrahedra. The first scenario, illustrated in figure 60(a), places
the new particle between face f and the neighbour creating two tetrahedra. The average skewness
of the tetrahedra is calculated using the method discussed below. The second scenario shown in
figure 60(b) positions two particles between the faces, resulting in three tetrahedra and the average
skewness is again calculated. If the average skewness of scenario two is lower than that of one for
all neighbouring faces to f , i.e. if it is more optimal to place two particles between f and its
neighbours, then only one new tetrahedra is formed and the particle is placed in position ei. An
example of this case is shown in figure 61. If the skewness in scenario one is lower for any pair in
the test, then the neighbour to f is added as a face which will bond with the new particle. This
neighbouring face then tests its own neighbours pairwise (excluding the parent) using the skewness
criteria, which may result in additional faces that bond with the new particle. The set of faces that
bond with the new particle are known as contact faces, and form the bases of the new tetrahedra
which are to be added. Spheres which share their vertices with the contact faces, and which bond
with the new particle, are known as contact spheres.

A quantity called the skewness number κ is introduced to test the regularity of added tetrahedra.
This number measures how much a proposed tetrahedron with volume Vtetra deviates from a regular
(or ideal) tetrahedron of the same volume. A regular tetrahedron has κ = 0, with larger skewness
numbers implying that the given tetrahedron deviates more strongly from the ideal shape. The
volume of the given tetrahedron is calculated using

Vtetra =
1
6
|a · b× c| (2.75)

where a, b, c are vectors from one vertex of the new tetrahedron to the other vertices. Using the
equation for the volume of a regular tetrahedron, the ideal edge length (of a regular tetrahedron)
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(a) Determining the point
to place particle x1 in the
one particle case.

(b) Determining the point
to place particles x1 and
x2 in the two particle case.

Figure 60: Adding a single particle (a), or two particles (b) between neighbouring faces l (with
vertices P1, P2, P3) and m (with vertices P2, P3, P4).

can be calculated as

Lideal =
(

12√
2
Vtetra

) 1
3

. (2.76)

The non-dimensional skewness number κ measures the deviation in length of the 6 edges from
Lideal,

κ =
∑6

i=1 |Li − Lideal|
Lideal

. (2.77)

Figure 60(a) shows the case where one particle is added at position x1 to face f with vertices
P1, P2 and P3, and a neighbour with vertices P2, P3 and P4. As two tetrahedra are added for
this case, the volume of both tetrahedra Vtetra1 and Vtetra2 are calculated using equation (2.75).
The vectors a, b and c for f may be given as a = P2 − P1, b = P3 − P1 and c = x1 − P1, and as
a = P2 − P4, b = P3 − P4 and c = x1 − P4 for the neighbour. Corresponding to V1 and V2, the
skewness numbers κ1 and κ2 are evaluated using equation (2.77), and their average is taken as κ.
For the two particle case in figure 60(b), three tetrahedra are required. The case with the lower
skewness number determines whether one or two particles are to be added between the faces.

In order to determine the coordinates of the spheres x1 and x2 (shown in figure 60), an opti-
misation problem is solved using MATLAB 6.5. For the one particle case of bonding, the total bond
length between the new particle and P1, P2, P3 and P4 is to be minimised, such that the length of
the bonds is at least σ. The objective function to be minimised is

Ψ =
4∑

i=1

|x1 − Pi|,

with constraints on the bond length as |x1 − Pj | ≥ σ for j = 1, 2, 3, 4.
For the two particle case, geometrically we have the face as shown in 60(b) with four vertices,

P1, P2, P3, P4. The optimal placement of the two particles, shown as x1 and x2 in the figure, are
unknown coordinates to be determined by optimisation. To minimise the total bond length, the
objective function is

Ψ =
3∑

i=1

|x1 − Pi|+
4∑

j=2

|x2 − Pj |+ |x1 − x2|.

As constraints, it is required that the length of the bonds must be at least σ, the separation distance
between sphere centres, i.e. |x1−Pj | ≥ σ and |x2−Pj | ≥ σ (for j = 1, 2, 3, 4) and |x1−x2| ≥ σ. A
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(a) Sphere A is the
position for placing
one particle between
faces [1 3 4] and
[1 2 4].

(b) Spheres B and
C are the place-
ment for two par-
ticles between faces
[1 3 4] and [1 2 4].

(c) Diagram of the
contact faces.

(d) The actual po-
sition for the 6th
sphere, as deter-
mined by optimisa-
tion.

Figure 61: Adding a particle to a 5 particle agglomerate. A contact face comparison between faces
[1 3 4] and [1 2 4] is shown in figures (a) and (b). A single contact face exists for this case ([1 3 4]),
with contact spheres 1, 3 and 4. Figure (c) illustrates the placement of the new particle.

non-linear equality constraint is specified in which |xi − P1| = |xj − P4| = |x1 − x2|. The starting
values of x1 and x2 are given by using the estimate points el and em (corresponding to faces l and
m) in matrix F .

Once the optimisation above is complete, the tetrahedra to be added are known; the new
tetrahedra are appended to matrix T , the new faces are added to F (and the flag changed from
external to internal for existing faces on F ), and the position of the new sphere is appended onto
matrix S.

3 EXAMPLE OF PARTICLE PLACEMENT

Figure 61 illustrates the algorithm discussed in the previous section when adding a primary particle
to a 5 particle agglomerate. The original primary particles are labelled ‘1’-‘5’ in figures 61(a)-(c)
and the initial contact face is f = [1 3 4]. Figures 61(a) and 61(b) consider a contact face
comparison between this face and neighbouring face [1 2 4]. The sphere labelled ‘A’ in figure
61(a) is the position as determined by optimisation when adding one particle between the faces.
In figure 61(b) spheres ‘B’ and ‘C’ are the optimal placement when adding two spheres between
the faces. For the one particle case in 61(a), the tetrahedra required are [1 3 4 A] and [1 2 4 A].
By calculation, these tetrahedra have an average skewness of κ1 = 1.83 (to 2 d.p.). For the two
particle case in 61(b), three tetrahedra are required, [1 3 4 B], [1 4 B C], and [1 4 C 2], which have
an average skewness of κ2 = 0.36. Since κ2 < κ1, it is more optimal for two particles to be added
between the faces, hence face f = [1 2 4] is not included as a contact face. Similarly, the other
neighbours to [1 3 4], faces [2 3 4] and [5 1 3], also yield κ2 < κ1. Hence there is one contact face
with contact spheres 1, 3 and 4. Figure 61(d) shows the actual placement for the sixth particle.

4 CALCULATION OF THE FLUID SURFACE

The distribution of liquid within an agglomerate is able to be represented using two parameters
of the model, the separation distance between spheres σ and a saturation parameter δ. The fluid
surface is formed using these parameters, along with the tetrahedra T and S matrices where for
each row t ∈ T a fluid segment is formed. The non-dimensional saturation parameter δ (0 ≤ δ ≤ 1)
is used to adjust the position of the external faces of the tetrahedron, allowing a variable amount of
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(a) The unex-
panded binder
tetrahedra, cor-
responding to
δ = 0

(b) Fluid tetrahe-
dra, expanded by
δ = 0.7.

(c) Cylinders added
to saturation state
δ = 0.7.

(d) Half-space cuts
are used to produce
an object which is
closed off.

Figure 62: Creation of a binder fluid segment

volume to exist within the agglomerate. The state δ = 0 corresponds to a non-expanded state, in
which the fluid surface is connected to the centres of the primary particles. For higher saturation
states, δ > 0, the fluid surface is defined by moving the external faces of the tetrahedron in the
direction of their outward pointing normal vectors, up to a maximum saturation state of δ = 1. A
saturation of δ = 1 corresponds to the case where the faces are moved outward a distance R equal
to the radius of the spheres. Figure 62(a) shows the unexpanded state δ = 0, while figure 62(b)
illustrates the saturation state δ = 0.7. The location of the primary particles remain fixed as the
saturation state is varied; the points ‘+’ shown in figure 62 correspond to the centre points of the
primary particles. In all but the δ = 0 case, cylinders of radius δ connect adjacent faces together
along the edges of the tetrahedron as shown in figure 62(c). k points along each of the cylinders
link adjacent faces of the tetrahedron together. Triangular mapping is used to form the vertices
and faces of the cylinders. The value of k is called the polyhedra accuracy. Once the cylinders are
added, the first derivative of the surface is continuous, but discontinuities in the second derivative
occur where cylinders intersect with the faces of the tetrahedron. As a result the fluid segments
do not have constant mean curvature, and therefore the fluid surface is an approximation to the
true binder surface.

As discussed in section 5, the binder fluid segments Ti must be convex objects. This is achieved
by forming the object as above, and then closing off the object by intersecting with planes that
pass through the lowest points of the expanded faces (the points 1, 2 and 3 in figures 62(b) and
62(c)). The completed binder segment is shown in figure 62(d).

5 AGGLOMERATE PROPERTIES

In this section, some concepts are introduced which enable agglomerate properties, which include
the surface area, volume, and fraction of wetted surface area, to be evaluated. An agglomerate is
the non-convex union of nS primary particles with nT tetrahedra, or

(
nS⋃
i=1

Si) ∪ (
nT⋃
i=1

Ti). (5.78)

Although these properties can only be evaluated for convex objects, the non-convex union in
equation (5.78) can be written in terms of convex sets. This is achieved by taking unions and
differences of the convex sets Si and Ti (as unions and differences of convex sets are also convex).
Convex sets are able to be written as a collection of half-spaces; a half-space is defined as

n · (x− x0) ≤ 0 (n 6= 0), (5.79)
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where n ∈ R3 is an outward pointing normal vector and x0 ∈ R3 is a point that lies on the plane

n · (x− x0) = 0 (n 6= 0). (5.80)

It is common to define d = n · x0. Using d, equation (5.79) is written

n · x ≤ d (n 6= 0). (5.81)

A polyhedron is a bounded convex set formed by the intersection of a finite number of half-
spaces; the spheres Si are polyhedra, and the construction of the Ti objects (discussed in section
4) is such that the fluid segments are polyhedra. As a half-space is convex, and since intersections
between convex regions are convex, polyhedra are convex. Properties of polyhedra including the
surface area and volume can be calculated. In general, the volume of non-convex objects can only
be evaluated by first dividing the object into convex regions, and summing properties of the convex
portions piecewise. For a union of convex components Ai,⋃

i

Ai =
∑

i

Ai −
∑
i 6=j

Ai ∩Aj +
∑

i 6=j 6=k

Ai ∩Aj ∩Ak − . . .±
⋂
i

Ai. (5.82)

Since polyhedra are an intersection of half-spaces, the intersection of two or more overlapping
polyhedra is also a polyhedra. The union in equation (5.82) requires polyhedra intersections to be
evaluated.

Construction of the agglomerate (sphere placement, binder fluid placement, and matrices S,
T and F ) are completed using MATLAB . Computational geometry calculations were completed
using an external C++ mathematics library written by Jonathan Marshall3. The library includes
routines to calculate the intersection between two polyhedra (e.g. P1 and P2 producing P1 ∩ P2),
the intersection of a polyhedra P with a half-space, and the calculation of area and volume of
polyhedra.

6 CALCULATING SURFACE AREA, VOLUME AND THE WET-
NESS

The wetness W is defined as the wetted fraction of the exterior agglomerate surface area. As W
is the fraction of binder fluid accessible to other incident particles, it is proposed that when two
agglomerates collide the probability of coalescence is related to the wetness of both agglomerates.
Exactly how the agglomerate wetness relates to coalescence is not examined in this paper.

The wetness of agglomerates is calculated using variables Awet and Adry which refer to wet and
dry surface areas of the particle. Primary particles drawn on the binder surface of figure 62(d) are
shown in figure 63(a). In this figure, the total agglomerate surface area A = Adry + Awet is the
sum of the exposed surface area of the spheres and the binder fluid. For the 4 particle case, the
polyhedra that result from the intersection of the primary particles and binder fluid are shown in
figure 63(b). Awet is calculated as the area of the binder less the area of the intersected polyhedra
common to the binder, and Adry is equal to the area of the spheres less the area of the intersected
polyhedra common to the spheres. The wetness W is equal to

W =
Awet

Awet +Adry
. (6.83)

The primary particles of a 4 particle agglomerate are drawn in figure 63(a), along with the fluid
tetrahedron T1. Dry regions are the sphere portions (where they do not overlap with the fluid),
and the binder tetrahedron is wet (where it does not overlap with the spheres). Later, the wetness
is plotted as a function of the volume ratio of binder fluid to solids. The solids volume is simply

3Institute of Fundamental Sciences, Massey University, New Zealand
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(a) A 4 particle agglom-
erate, showing placement
of primary particles and
binder fluid.

(b) Polyhedra resulting from the
intersection between primary par-
ticles and binder fluid.

Figure 63: In figure 63(a), primary particles and the binder tetrahedra is drawn. Figure 63(b)
shows the intersected portions, obtained by intersecting the spheres with the binder fluid. For this
figure, R = 1, δ = 0.7 and s = 0.5.

N × 4
3πR

3, and the binder volume Vwet is calculated using the volume of the tetrahedra and the
volume of the intersected regions such that (for the 4 particle case in figure 63)

Vwet = V (T1)−
4∑

i=1

V (Si ∩ T1)

where V (P ) is the volume of polyhedron P . The fluids to solids ratio between Vwet and the volume
of solid is denoted V ∗. For the surface areas, Adry and Awet are

Awet = A(T1)−
4∑

i=1

Awet(Si ∩ T1) and Adry =
4∑

i=1

[A(Si)−Adry(Si ∩ T1)] (6.84)

where Adry(Si∩T1) is the area of Si∩T1 (see figure 63(b)) common to Si, and Awet(Si∩T1) is the
area of Si ∩ T1 (see figure 63(b)) common to T1. The wetness is calculated using equation (6.83).

7 CUTTING THE TETRAHEDRA

For saturation states δ > 0 neighbouring tetrahedra overlap when formed using the method of
section 4. For large agglomerates, large number of overlaps occur between the tetrahedra and
the primary particles. Figure 64(a), for example, shows the 5 particle case where overlap occurs
between 2 fluid tetrahedra. The number of intersections required to calculate the union of equation
(5.78) (as implied by equation (5.82)) are able to be minimised if overlap is not permitted between
the fluid segments, i.e. if Ti ∩ Tj = ∅ for i 6= j. If this is enforced, then since Si ∩ Sj = ∅ for i 6= j,
then the only non-empty intersections are Si ∩Tj . This reduces the agglomerate union of equation
(5.78) to ∑

i

Si +
∑

i

Ti −
∑
i 6=j

Si ∩ Tj . (7.85)

Therefore, when adding a tetrahedron Tk, existing tetrahedra which neighbour Tk along with Tk

are cut to avoid overlap. Depending on how many vertices are shared between indices of Tk and
the neighbour, different half-space cuts are completed. If a face is shared with 3 common (primary
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(a) The tetrahedra fluid seg-
ments overlap for N = 5 pri-
mary particles.

(b) Cutting the tetrahedra
with the appropriate half-
spaces resolves this, and en-
ables the wetness to be cal-
culated.

Figure 64: Overlap at a face for two adjacent tetrahedra. Primary particles are not drawn in this
figure.

particle) vertices, a face cut is completed, an edge cut is made if an edge is shared and 2 vertices
are common, and a point cut is made if there is one vertex in common.

In the situation shown in figure 64(a), the tetrahedra meet at a face and 3 vertices are shared.
Denote the red (or top) tetrahedron as T1, the blue tetrahedron as T2, and the face shared by the
tetrahedra as f . As primary particles common to T1 and T2 lie in the plane of f , f is the appropriate
dividing plane to cut the tetrahedra. Cuts are also performed when the binder tetrahedra overlap
due to edge and point cuts.

8 RESULTS OF THE MODEL

Parameters for the model are the number of primary particles N , the minimum sphere separation
distance between spheres s and the fluid saturation parameter δ. Using these parameters, the
surface wetness, area and volume are calculated as follows:

W = W (N, s, δ) and V ∗ = V ∗(N, s, δ), (8.86)

where N is the number of primary particles and V ∗ is the fluid to solid ratio. Assumptions for
the model are that the primary particles are non-deformable rigid spheres and that the binder is
distributed uniformly beneath the fluid surface, that is, the agglomerate is in the capillary state.
In the results presented a normalised sphere radius of R = 1 is used, with the polyhedra accuracy
k (as discussed in section 4) set equal to 30. The parameters s and δ are calculated over the ranges
of s = 0 : 0.01 : 1 and δ = 0 : 0.01 : 14. For an N particle agglomerate, surfaces parameterised by
s and δ are obtained for each of the functions from equation (8.86).

In granulation systems when a measured amount of powder and binder are mixed, the fluid to
solid ratio V ∗ is a known quantity. If it is assumed that no evaporation occurs, and that the solid
particles are rigid spheres, then V ∗ is constant for a given system. Consolidation occurs over time
and so the separation distance between primary particles decreases. Of interest is the relationship
between surface wetness W and the separation distance s for constant V ∗. In the following section,
the relationship between these variables is studied.

4a : b : c is the set {a, a + b, a + 2b, ..., c}, where c−a
b

steps exist between a and c.
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Figure 65: Volume contour plot showing the variation of the parameters s and δ for constant
fluid to solid ratio V ∗ for a 30 particle agglomerate. The fluid to solid ratio is considered for
V ∗ = 0.2 : 0.1 : 0.7 and V ∗ = 1.0

(a) The agglomerate formed
for N = 30, s = 0.2 and δ ≈
0.37.

(b) The agglomerate formed
for N = 30, s = 0.2 and δ = 0.

Figure 66: Two saturation states of an agglomerate formed by 30 primary particles with minimum
separation distance between spheres s = 0.2. Plot (a) corresponds to the case represented as a
circle (‘o’) in figure 65, with δ ≈ 0.37, V ∗ ≈ 0.5 and W ≈ 0.27. Plot (b) shows the state δ = 0,
with V ∗ ≈ 0.36 and W ≈ 0.16.
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9 SURFACE WETNESS ANALYSIS

The mechanism by which consolidation occurs has been studied by workers including (3), but
is not considered in this study. Given that agglomerates consolidate, this work investigates the
change in surface wetness W that results from a decrease in the inter-particle separation distance
s. The relationship between s and δ for fixed values of the fluid to solid ratio V ∗ for a 30 particle
agglomerate is shown in figure 65 for V ∗ = 0.2 : 0.1 : 0.7 and V ∗ = 1.0. A particular agglomer-
ate is defined by fixing three of the parameters of the model; the complete set of parameters is
W,A∗, V ∗, N, δ and s. An example is given in figure 66(a), where the fixed parameters are N = 30,
s = 0.2 and V ∗ = 0.5. In the contour plot of figure 65, this configuration is shown as a circle
(‘o’) on the V ∗ = 0.5 contour. Using the functions V ∗ and W , the liquid saturation state for this
example is δ ≈ 0.37 and the surface wetness is W ≈ 0.27, implying that approximately 27% of
the agglomerate is surface wet. For a fixed inter-particle separation distance, the surface wetness
increases with increasing fluid to solid ratio V ∗, which agrees with intuition.

Figure 67 shows a plot of surface wetness W with respect to separation distance s for a range
of V ∗ values. Dashed contours on this figure represent constant values of the liquid saturation
parameter δ. The figure shows that for decreasing separation distance s, an increase in the surface
wetness W occurs for constant V ∗. This can be understood by considering an N particle agglom-
erate in a expanded (or loosely-packed) state, with separation distance s1. When consolidation
occurs, and the separation distance is decreased from s1 to s2, the void volume of the agglomerate
reduces. This forces the fluid to migrate from the interior of the particle to the agglomerate surface,
which has the effect of increasing the surface wetness.

Figure 69 shows the trend of surface wetness with respect to inter-particle separation distance
for different sized agglomerates; in particular for N = 10, 20, 30 and 50. Several different values of
the fluid to solid ratio V ∗ are shown in each of the plots of 69(a)-69(d). For fixed N , the surface
wetness increases for decreasing separation distance s, as discussed above. For fixed inter-particle
separation distance s, and for a particular V ∗, the figure shows decreasing surface wetness for
increasing numbers of primary particles (N). This behaviour can be explained by introducing the
commonly used voidage ε, which is defined, for the maximal saturation state δ = 1, as

ε =
Vwet

Vwet +N × 4
3πR

3
, (9.87)

where Vliquid is the volume of binder fluid in an agglomerate normalised to the volume of a primary
particle, and Vsolid is equal to N (as Vliquid and Vsolid are normalised to the volume of a sphere
of radius R). The voidage calculation given in equation (9.87) is akin to ‘wrapping’ the surface
of the particle with cellophane, and then calculating the fraction of volume occupied by liquid.
Figure 68 shows the relationship between voidage and the inter-particle separation distance s,
which shows that, for fixed s, voidage ε increases with increasing N . As more particles are added
to the agglomerate (increasing the radius of the particle), more void space is introduced. The result
shown in figure 68 suggests that the void (internal) volume increases as the particle increases in
radius. As there is proportionally more volume interior to the agglomerate, more binder fluid exists
inside the particle and this reduces the surface wetness of the agglomerate. Figure 70 considers
the relationship plotted in figure 67 for varied number of primary particles N . In general, for
constant V ∗, this figure shows that small agglomerates are the most surface wet with surface
wetness decreasing as more primary particles are added.

The contours of wetness in figures 67 and 69 have an upper limit with respect to W due the
idealised model described in section 4, where saturation has a maximum value of δ = 1. In reality,
for such super-saturated states (i.e. for δ > 1) the fluid would completely enclose the primary
particles to form a slurry, but this is of no interest in granulation. Conversely, for dry particles,
the wetness may be less than those given in figure 67 which correspond to δ = 0. The value δ = 0
is not a physical limit, but is a model limit due to the methods described in section 4 to construct
the binder surface.
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Figure 67: Volume contour plot of surface
wetness W with respect to separation dis-
tance s for an N = 30 particle agglomer-
ate. Solid lines denote constant values of
V ∗, while dashed lines are contours of con-
stant δ.

Figure 68: Plot of voidage ε with respect
to s. For fixed s, the voidage increases for
increasing particle number N .
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(a) V ∗ = 0.3 (b) V ∗ = 0.5

(c) V ∗ = 0.7 (d) V ∗ = 1.0

Figure 69: Plot of surface wetness W with respect to inter-particle separation
distance s for agglomerates composed of 10, 20, 30 and 50 primary particles.
Values of V ∗ used in this figure are V = 0.3, 0.5, 0.7 and 1.0.

(a) s = 0 (b) s = 0.2

(c) s = 0.5 (d) s = 0.7

Figure 70: Graphs of wetness W with respect to particle number N for a range
of s and a range of fluids to solid ratio values V ∗.
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10 CONCLUSIONS

The following conclusions can be drawn from this model about surface wetness as a function of
the number of primary particles in the agglomerate, the separation distance of these particles, and
the saturation of the agglomerate.

• small agglomerates are the most surface wet for a constant separation distance, and large
agglomerates have a lower surface wetness.

• as the separation distance decreases during consolidation, and for constant values of the fluids
to solids volume ratio V ∗ the, wetness increases.

• the rate of change of wetness increases with further consolidation.

• agglomerates with larger fluids to solids volume ratio have greater surface wetness.
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